Semin Neurol 2022; 42(06): 735-741
DOI: 10.1055/s-0042-1760232
Review Article

Dystonia, Chorea, and Ataxia: Three Challenging Cases

José Luiz Pedroso
1   Division of General Neurology and Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, Sao Paulo, Sao Paulo, Brazil
,
Thiago Cardoso Vale
2   Department of Neurology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
,
Alex Tiburtino Meira
3   Department of Neurology, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
,
Pedro Braga-Neto
4   Department of Neurology, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
,
Orlando G. P. Barsottini
1   Division of General Neurology and Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, Sao Paulo, Sao Paulo, Brazil
,
Alberto J. Espay
5   Gardner Neuroscience Institute, Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio
› Author Affiliations

Funding None.

Abstract

Movement disorders comprise a heterogeneous and complex group of neurological disorders that increase (hyperkinetic) or decrease (hypokinetic) the speed or amplitude of movements, or disrupt their coordinated sequencing. In this article, we describe three instructive cases, exemplifying classic movement disorders, namely dystonia, chorea, and ataxia. We highlight the diagnostic approach based on clinical clues, syndromic reasoning, evaluation, and management recommendations. Each case ends with key messages for the clinicians.

Ethical Statement

This study was approved by our Ethics Institution. The patients reported herein approved the use of images and publication.




Publication History

Article published online:
29 December 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Albanese A, Bhatia K, Bressman SB. et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord Clin Pract (Hoboken) 2013; 28 (07) 863-873
  • 2 Schneider SA. Neurodegenerations with brain iron accumulation. Parkinsonism Relat Disord 2016; 22 (Suppl 1): S21-S25
  • 3 Herzog R, Weissbach A, Bäumer T, Münchau A. Complex dystonias: an update on diagnosis and care. J Neurol Transm 2021; 128 (04) 431-445
  • 4 Wang ZB, Liu JY, Xu XJ. et al. Neurodegeneration with brain iron accumulation: insights into the mitochondria dysregulation. Biomed Pharmacother 2019; 118: 109068
  • 5 Salomão RP, Pedroso JL, Gama MT. et al. A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging. Arq Neuropsiquiatr 2016; 74 (07) 587-596
  • 6 Lehéricy S, Roze E, Goizet C, Mochel F. MRI of neurodegeneration with brain iron accumulation. Curr Opin Neurol 2020; 33 (04) 462-473
  • 7 Haraguchi T, Terada S, Ishizu H. et al. Coexistence of TDP-43 and tau pathology in neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome). Neuropathology 2011; 31 (05) 531-539
  • 8 Brugger F, Kägi G, Pandolfo M. et al. Neurodegeneration with brain iron accumulation (NBIA) syndromes presenting with late-onset craniocervical dystonia: an illustrative case series. Mov Disord Clin Pract (Hoboken) 2016; 4 (02) 254-257
  • 9 Iankova V, Karin I, Klopstock T, Schneider SA. Emerging disease-modifying therapies in neurodegeneration with brain iron accumulation (NBIA) disorders. Front Neurol 2021; 12: 629414
  • 10 Termsarasab P. Chorea. Continuum (Minneap Minn) 2019; 25 (04) 1001-1035
  • 11 Cardoso F, Seppi K, Mair KJ, Wenning GK, Poewe W. Seminars on chorea. Lancet Neurol 2006; 5: 589-602
  • 12 Cardoso F. Huntington disease and other choreas. Neurol Clin 2009; 27 (03) 719-736
  • 13 De Oliveira DS, Santos DP, Araújo DO. et al. Huntington's disease-like 2: a phenocopy not to miss. Pract Neurol 2020; 20 (06) 479-481
  • 14 Anderson DG, Walker RH, Connor M. et al. A systematic review of the Huntington disease-like 2 phenotype. J Huntingtons Dis 2017; 6: 37-46
  • 15 Bodranghien F, Bastian A, Casali C. et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016; 15 (03) 369-391
  • 16 Braga Neto P, Pedroso JL, Kuo SH, Marcondes Jr CF, Teive HA, Barsottini OG. Current concepts in the treatment of hereditary ataxias. Arq Neuropsiquiatr 2016; 74 (03) 244-252
  • 17 Krygier M, Mazurkiewicz-Bełdzińska M. Milestones in genetics of cerebellar ataxias. Neurogenetics 2021; 22 (04) 225-234
  • 18 Scott SSO, Pedroso JL, Barsottini OGP, França-Junior MC, Braga-Neto P. Natural history and epidemiology of the spinocerebellar ataxias: insights from the first description to nowadays. J Neurol Sci 2020; 417: 117082
  • 19 Horton LC, Frosch MP, Vangel MG, Weigel-DiFranco C, Berson EL, Schmahmann JD. Spinocerebellar ataxia type 7: clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum 2013; 12 (02) 176-193
  • 20 Stevanin G, Giunti P, Belal GD. et al. De novo expansion of intermediate alleles in spinocerebellar ataxia 7. Hum Mol Genet 1998; 7: 1809-1813
  • 21 Tercero-Pérez K, Cortés H, Torres-Ramos Y. et al. Effects of physical rehabilitation in patients with spinocerebellar ataxia type 7. Cerebellum 2019; 18 (03) 397-405