Semin Respir Crit Care Med 2023; 44(02): 225-241
DOI: 10.1055/s-0042-1760250
Review Article

Diagnosis and Management of Cystic Fibrosis Exacerbations

Tijana Milinic
1   Department of Medicine, University of Washington School of Medicine, Seattle, Washington
,
Oliver J. McElvaney
2   Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
,
Christopher H. Goss
1   Department of Medicine, University of Washington School of Medicine, Seattle, Washington
2   Cysic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, Washington
3   Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
› Author Affiliations
Funding C.H.G.'s research time is supported by the Cystic Fibrosis Foundation Therapeutics (grant no.: GOSS13A0) and NIH (grant numbers: P30 DK089507 and UL1TR000423). There was no role of funding sources in the writing of this manuscript or the decision to submit for publication.

Abstract

With the improving survival of cystic fibrosis (CF) patients and the advent of highly effective cystic fibrosis transmembrane conductance regulator (CFTR) therapy, the clinical spectrum of this complex multisystem disease continues to evolve. One of the most important clinical events for patients with CF in the course of this disease is acute pulmonary exacerbation (PEx). Clinical and microbial epidemiology studies of CF PEx continue to provide important insight into the disease course, prognosis, and complications. This work has now led to several large-scale clinical trials designed to clarify the treatment paradigm for CF PEx. The primary goal of this review is to provide a summary and update of the pathophysiology, clinical and microbial epidemiology, outcome and treatment of CF PEx, biomarkers for exacerbation, and the impact of highly effective modulator therapy on these events moving forward.



Publication History

Article published online:
06 February 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Knapp EA, Fink AK, Goss CH. et al. The cystic fibrosis foundation patient registry. design and methods of a National Observational Disease Registry. Ann Am Thorac Soc 2016; 13 (07) 1173-1179
  • 2 Jain M, Goss CH. Update in cystic fibrosis 2013. Am J Respir Crit Care Med 2014; 189 (10) 1181-1186
  • 3 MacKenzie T, Gifford AH, Sabadosa KA. et al. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry. Ann Intern Med 2014; 161 (04) 233-241
  • 4 Liou TG, Adler FR, Fitzsimmons SC, Cahill BC, Hibbs JR, Marshall BC. Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol 2001; 153 (04) 345-352
  • 5 Liou TG, Adler FR, Huang D. Use of lung transplantation survival models to refine patient selection in cystic fibrosis. Am J Respir Crit Care Med 2005; 171 (09) 1053-1059
  • 6 Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002; 34 (02) 91-100
  • 7 Britto MT, Kotagal UR, Hornung RW, Atherton HD, Tsevat J, Wilmott RW. Impact of recent pulmonary exacerbations on quality of life in patients with cystic fibrosis. Chest 2002; 121 (01) 64-72
  • 8 Dobbin CJ, Bartlett D, Melehan K, Grunstein RR, Bye PT. The effect of infective exacerbations on sleep and neurobehavioral function in cystic fibrosis. Am J Respir Crit Care Med 2005; 172 (01) 99-104
  • 9 Wagener JS, Rasouliyan L, VanDevanter DR. et al; Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Oral, inhaled, and intravenous antibiotic choice for treating pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol 2013; 48 (07) 666-673
  • 10 Hiatt PW, Grace SC, Kozinetz CA. et al. Effects of viral lower respiratory tract infection on lung function in infants with cystic fibrosis. Pediatrics 1999; 103 (03) 619-626
  • 11 Ortiz JR, Neuzil KM, Victor JC, Wald A, Aitken ML, Goss CH. Influenza-associated cystic fibrosis pulmonary exacerbations. Chest 2010; 137 (04) 852-860
  • 12 Somayaji R, Goss CH, Khan U, Neradilek M, Neuzil KM, Ortiz JR. Cystic fibrosis pulmonary exacerbations attributable to respiratory syncytial virus and influenza: a population-based study. Clin Infect Dis 2017; 64 (12) 1760-1767
  • 13 Piedra PA, Grace S, Jewell A. et al. Purified fusion protein vaccine protects against lower respiratory tract illness during respiratory syncytial virus season in children with cystic fibrosis. Pediatr Infect Dis J 1996; 15 (01) 23-31
  • 14 Piedra PA, Cron SG, Jewell A. et al; Purified Fusion Protein Vaccine Study Group. Immunogenicity of a new purified fusion protein vaccine to respiratory syncytial virus: a multi-center trial in children with cystic fibrosis. Vaccine 2003; 21 (19-20): 2448-2460
  • 15 Regelmann WE, Elliott GR, Warwick WJ, Clawson CC. Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am Rev Respir Dis 1990; 141 (4 pt 1): 914-921
  • 16 Smith AL, Redding G, Doershuk C. et al. Sputum changes associated with therapy for endobronchial exacerbation in cystic fibrosis. J Pediatr 1988; 112 (04) 547-554
  • 17 Ramsey BW, Pepe MS, Quan JM. et al; Cystic Fibrosis Inhaled Tobramycin Study Group. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med 1999; 340 (01) 23-30
  • 18 Aaron SD, Ramotar K, Ferris W. et al. Adult cystic fibrosis exacerbations and new strains of Pseudomonas aeruginosa . Am J Respir Crit Care Med 2004; 169 (07) 811-815
  • 19 Konstan MW, Byard PJ, Hoppel CL, Davis PB. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995; 332 (13) 848-854
  • 20 Lands LC, Milner R, Cantin AM, Manson D, Corey M. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr 2007; 151 (03) 249-254
  • 21 Conrad C, Lymp J, Thompson V. et al. Long-term treatment with oral N-acetylcysteine: affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. J Cyst Fibros 2015; 14 (02) 219-227
  • 22 Ren CL, Pasta DJ, Rasouliyan L, Wagener JS, Konstan MW, Morgan WJ. Scientific Advisory Group and the Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Relationship between inhaled corticosteroid therapy and rate of lung function decline in children with cystic fibrosis. J Pediatr 2008; 153 (06) 746-751
  • 23 Chmiel JF, Konstan MW, Accurso FJ. et al; Assessment of Induced Sputum in Cystic Fibrosis Study Group. Use of ibuprofen to assess inflammatory biomarkers in induced sputum: implications for clinical trials in cystic fibrosis. J Cyst Fibros 2015; 14 (06) 720-726
  • 24 Konstan MW, VanDevanter DR, Sawicki GS. et al. Association of high-dose ibuprofen use, lung function decline, and long-term survival in children with cystic fibrosis. Ann Am Thorac Soc 2018; 15 (04) 485-493
  • 25 Ramsey BW, Boat TF. Outcome measures for clinical trials in cystic fibrosis. Summary of a Cystic Fibrosis Foundation consensus conference. J Pediatr 1994; 124 (02) 177-192
  • 26 Goss CH, Burns JL. Exacerbations in cystic fibrosis. 1: epidemiology and pathogenesis. Thorax 2007; 62 (04) 360-367
  • 27 Fuchs HJ, Borowitz DS, Christiansen DH. et al; The Pulmozyme Study Group. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 1994; 331 (10) 637-642
  • 28 Konstan MW, Döring G, Heltshe SL. et al; Investigators and Coordinators of BI Trial 543.45. A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis. J Cyst Fibros 2014; 13 (02) 148-155
  • 29 Dakin C, Henry RL, Field P, Morton J. Defining an exacerbation of pulmonary disease in cystic fibrosis. Pediatr Pulmonol 2001; 31 (06) 436-442
  • 30 Rosenfeld M, Emerson J, Williams-Warren J. et al. Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr 2001; 139 (03) 359-365
  • 31 Rabin HR, Butler SM, Wohl ME. et al; Epidemiologic Study of Cystic Fibrosis. Pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol 2004; 37 (05) 400-406
  • 32 Johnson C, Butler SM, Konstan MW, Morgan W, Wohl ME. Factors influencing outcomes in cystic fibrosis: a center-based analysis. Chest 2003; 123 (01) 20-27
  • 33 Ellaffi M, Vinsonneau C, Coste J. et al. One-year outcome after severe pulmonary exacerbation in adults with cystic fibrosis. Am J Respir Crit Care Med 2005; 171 (02) 158-164
  • 34 Texereau J, Jamal D, Choukroun G. et al. Determinants of mortality for adults with cystic fibrosis admitted in intensive care unit: a multicenter study. Respir Res 2006; 7 (01) 14
  • 35 Sood N, Paradowski LJ, Yankaskas JR. Outcomes of intensive care unit care in adults with cystic fibrosis. Am J Respir Crit Care Med 2001; 163 (02) 335-338
  • 36 Vedam H, Moriarty C, Torzillo PJ, McWilliam D, Bye PT. Improved outcomes of patients with cystic fibrosis admitted to the intensive care unit. J Cyst Fibros 2004; 3 (01) 8-14
  • 37 Dobbin CJ, Milross MA, Piper AJ, Sullivan C, Grunstein RR, Bye PT. Sequential use of oxygen and bi-level ventilation for respiratory failure in cystic fibrosis. J Cyst Fibros 2004; 3 (04) 237-242
  • 38 Siuba M, Attaway A, Zein J. et al. Mortality in adults with cystic fibrosis requiring mechanical ventilation. Cross-sectional analysis of nationwide events. Ann Am Thorac Soc 2019; 16 (08) 1017-1023
  • 39 Liou TG, Adler FR, Cahill BC. et al. Survival effect of lung transplantation among patients with cystic fibrosis. JAMA 2001; 286 (21) 2683-2689
  • 40 Mayer-Hamblett N, Rosenfeld M, Emerson J, Goss CH, Aitken ML. Developing cystic fibrosis lung transplant referral criteria using predictors of 2-year mortality. Am J Respir Crit Care Med 2002; 166 (12, pt 1): 1550-1555
  • 41 Burgel PR, Lemonnier L, Dehillotte C. et al. Cluster and CART analyses identify large subgroups of adults with cystic fibrosis at low risk of 10-year death. Eur Respir J 2019; 53 (03) 53
  • 42 Coriati A, Sykes J, Nkam L, Hocine MN, Burgel PR, Stephenson AL. Validation of the French 3-year prognostic score using the Canadian Cystic Fibrosis registry. J Cyst Fibros 2019; 18 (03) 396-398
  • 43 Stanojevic S, Sykes J, Stephenson AL, Aaron SD, Whitmore GA. Development and external validation of 1- and 2-year mortality prediction models in cystic fibrosis. Eur Respir J 2019; 54 (03) 1900224
  • 44 Lehr CJ, Skeans M, Dasenbrook E. et al. Effect of including important clinical variables on accuracy of the lung allocation score for cystic fibrosis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2019; 200 (08) 1013-1021
  • 45 Marshall BC, Butler SM, Stoddard M, Moran AM, Liou TG, Morgan WJ. Epidemiology of cystic fibrosis-related diabetes. J Pediatr 2005; 146 (05) 681-687
  • 46 Goss CH, Otto K, Aitken ML, Rubenfeld GD. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am J Respir Crit Care Med 2002; 166 (03) 356-361
  • 47 Goss CH, Rubenfeld GD, Otto K, Aitken ML. The effect of pregnancy on survival in women with cystic fibrosis. Chest 2003; 124 (04) 1460-1468
  • 48 VanDevanter DR, Flume PA, Morris N, Konstan MW. Probability of IV antibiotic retreatment within thirty days is associated with duration and location of IV antibiotic treatment for pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2016; 15 (06) 783-790
  • 49 Schechter MS, Shelton BJ, Margolis PA, Fitzsimmons SC. The association of socioeconomic status with outcomes in cystic fibrosis patients in the United States. Am J Respir Crit Care Med 2001; 163 (06) 1331-1337
  • 50 Goss CH, Newsom SA, Schildcrout JS, Sheppard L, Kaufman JD. Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med 2004; 169 (07) 816-821
  • 51 Brody AS, Sucharew H, Campbell JD. et al. Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am J Respir Crit Care Med 2005; 172 (09) 1128-1132
  • 52 Smith JA, Owen EC, Jones AM, Dodd ME, Webb AK, Woodcock A. Objective measurement of cough during pulmonary exacerbations in adults with cystic fibrosis. Thorax 2006; 61 (05) 425-429
  • 53 Ramsey BW, Davies J, McElvaney NG. et al; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011; 365 (18) 1663-1672
  • 54 Wainwright CE, Elborn JS, Ramsey BW. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 2015; 373 (18) 1783-1784
  • 55 Taylor-Cousar JL, Munck A, McKone EF. et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 2017; 377 (21) 2013-2023
  • 56 Mayer-Hamblett N, Rosenfeld M, Treggiari MM. et al; EPIC, ESCF Investigators. Standard care versus protocol based therapy for new onset Pseudomonas aeruginosa in cystic fibrosis. Pediatr Pulmonol 2013; 48 (10) 943-953
  • 57 Vandevanter DR, Yegin A, Morgan WJ, Millar SJ, Pasta DJ, Konstan MW. Design and powering of cystic fibrosis clinical trials using pulmonary exacerbation as an efficacy endpoint. J Cyst Fibros 2011; 10 (06) 453-459
  • 58 Sanders DB, Bittner RC, Rosenfeld M, Hoffman LR, Redding GJ, Goss CH. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am J Respir Crit Care Med 2010; 182 (05) 627-632
  • 59 Parkins MD, Rendall JC, Elborn JS. Incidence and risk factors for pulmonary exacerbation treatment failures in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa . Chest 2012; 141 (02) 485-493
  • 60 Schechter MS, Leonard A, Nash J. et al. Benchmarking: signature themes. Pediatr Pulmonol 2006; 41: 122-123
  • 61 Konstan MW, Morgan WJ, Butler SM. et al; Scientific Advisory Group and the Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 2007; 151 (02) 134-139 , 139.e1
  • 62 Gold LS, Hansen RN, Patrick DL. et al. Health care costs in a randomized trial of antimicrobial duration among cystic fibrosis patients with pulmonary exacerbations. J Cyst Fibros 2022; 21 (04) 594-599
  • 63 Goss CH, Heltshe SL, West NE. et al; STOP2 Investigators. A randomized clinical trial of antimicrobial duration for cystic fibrosis pulmonary exacerbation treatment. Am J Respir Crit Care Med 2021; 204 (11) 1295-1305
  • 64 Byrnes CA, Vidmar S, Cheney JL. et al; ACFBAL Study Investigators. Prospective evaluation of respiratory exacerbations in children with cystic fibrosis from newborn screening to 5 years of age. Thorax 2013; 68 (07) 643-651
  • 65 Kusel MM, de Klerk N, Holt PG, Landau LI, Sly PD. Occurrence and management of acute respiratory illnesses in early childhood. J Paediatr Child Health 2007; 43 (03) 139-146
  • 66 van Ewijk BE, van der Zalm MM, Wolfs TF. et al. Prevalence and impact of respiratory viral infections in young children with cystic fibrosis: prospective cohort study. Pediatrics 2008; 122 (06) 1171-1176
  • 67 Chattoraj SS, Ganesan S, Jones AM. et al. Rhinovirus infection liberates planktonic bacteria from biofilm and increases chemokine responses in cystic fibrosis airway epithelial cells. Thorax 2011; 66 (04) 333-339
  • 68 Van Ewijk BE, Wolfs TF, Aerts PC. et al. RSV mediates Pseudomonas aeruginosa binding to cystic fibrosis and normal epithelial cells. Pediatr Res 2007; 61 (04) 398-403
  • 69 Rosenfeld M, Ratjen F, Brumback L. et al; ISIS Study Group. Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 2012; 307 (21) 2269-2277
  • 70 Mayer-Hamblett N, Retsch-Bogart G, Kloster M. et al; OPTIMIZE Study Group. Azithromycin for early pseudomonas infection in cystic fibrosis. The OPTIMIZE Randomized Trial. Am J Respir Crit Care Med 2018; 198 (09) 1177-1187
  • 71 Belessis Y, Dixon B, Hawkins G. et al. Early cystic fibrosis lung disease detected by bronchoalveolar lavage and lung clearance index. Am J Respir Crit Care Med 2012; 185 (08) 862-873
  • 72 Aurora P, Stanojevic S, Wade A. et al; London Cystic Fibrosis Collaboration. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am J Respir Crit Care Med 2011; 183 (06) 752-758
  • 73 Vermeulen F, Proesmans M, Boon M, Havermans T, De Boeck K. Lung clearance index predicts pulmonary exacerbations in young patients with cystic fibrosis. Thorax 2014; 69 (01) 39-45
  • 74 Hatziagorou E, Avramidou V, Kirvassilis F, Tsanakas J. Use of lung clearance index to assess the response to intravenous treatment in cystic fibrosis. Hippokratia 2015; 19 (01) 47-52
  • 75 Sonneveld N, Stanojevic S, Amin R. et al. Lung clearance index in cystic fibrosis subjects treated for pulmonary exacerbations. Eur Respir J 2015; 46 (04) 1055-1064
  • 76 Perrem L, Stanojevic S, Shaw M. et al. Lung clearance index to track acute respiratory events in school-age children with cystic fibrosis. Am J Respir Crit Care Med 2021; 203 (08) 977-986
  • 77 Hatziagorou E, Avramidou V, Gioulvanidou M. et al. Pulmonary exacerbations, airway pathogens, and long-term course of lung clearance index in children and young adults with cystic fibrosis. Pediatr Pulmonol 2022; 57 (12) 3069-3076
  • 78 Wong K, Roberts MC, Owens L, Fife M, Smith AL. Selective media for the quantitation of bacteria in cystic fibrosis sputum. J Med Microbiol 1984; 17 (02) 113-119
  • 79 Carson LA, Tablan OC, Cusick LB, Jarvis WR, Favero MS, Bland LA. Comparative evaluation of selective media for isolation of Pseudomonas cepacia from cystic fibrosis patients and environmental sources. J Clin Microbiol 1988; 26 (10) 2096-2100
  • 80 Henry DA, Campbell ME, LiPuma JJ, Speert DP. Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 1997; 35 (03) 614-619
  • 81 Burns JL, Emerson J, Stapp JR. et al. Microbiology of sputum from patients at cystic fibrosis centers in the United States. Clin Infect Dis 1998; 27 (01) 158-163
  • 82 Davies JC, Moskowitz SM, Brown C. et al; VX16-659-101 Study Group. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018; 379 (17) 1599-1611
  • 83 Armstrong DS, Grimwood K, Carlin JB, Carzino R, Olinsky A, Phelan PD. Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 1996; 21 (05) 267-275
  • 84 Rosenfeld M, Emerson J, Accurso F. et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol 1999; 28 (05) 321-328
  • 85 Kabra SK, Alok A, Kapil A. et al. Can throat swab after physiotherapy replace sputum for identification of microbial pathogens in children with cystic fibrosis?. Indian J Pediatr 2004; 71 (01) 21-23
  • 86 De Boeck K, Alifier M, Vandeputte S. Sputum induction in young cystic fibrosis patients. Eur Respir J 2000; 16 (01) 91-94
  • 87 Henig NR, Tonelli MR, Pier MV, Burns JL, Aitken ML. Sputum induction as a research tool for sampling the airways of subjects with cystic fibrosis. Thorax 2001; 56 (04) 306-311
  • 88 Suri R, Marshall LJ, Wallis C, Metcalfe C, Shute JK, Bush A. Safety and use of sputum induction in children with cystic fibrosis. Pediatr Pulmonol 2003; 35 (04) 309-313
  • 89 Ho SA, Ball R, Morrison LJ, Brownlee KG, Conway SP. Clinical value of obtaining sputum and cough swab samples following inhaled hypertonic saline in children with cystic fibrosis. Pediatr Pulmonol 2004; 38 (01) 82-87
  • 90 Ordoñez CL, Henig NR, Mayer-Hamblett N. et al. Inflammatory and microbiologic markers in induced sputum after intravenous antibiotics in cystic fibrosis. Am J Respir Crit Care Med 2003; 168 (12) 1471-1475
  • 91 Saiman L, Burns JL, Larone D, Chen Y, Garber E, Whittier S. Evaluation of MicroScan Autoscan for identification of Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Clin Microbiol 2003; 41 (01) 492-494
  • 92 Burns JL, Saiman L, Whittier S. et al. Comparison of two commercial systems (Vitek and MicroScan-WalkAway) for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Diagn Microbiol Infect Dis 2001; 39 (04) 257-260
  • 93 Burns JL, Saiman L, Whittier S. et al. Comparison of agar diffusion methodologies for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Clin Microbiol 2000; 38 (05) 1818-1822
  • 94 Ciofu O, Giwercman B, Pedersen SS, Høiby N. Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center. Acta Pathol Microbiol Scand Suppl 1994; 102 (09) 674-680
  • 95 Taccetti G, Campana S, Marianelli L. Multiresistant non-fermentative gram-negative bacteria in cystic fibrosis patients: the results of an Italian multicenter study. Italian Group for Cystic Fibrosis microbiology. Eur J Epidemiol 1999; 15 (01) 85-88
  • 96 Aaron SD, Vandemheen KL, Ferris W. et al. Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: a randomised, double-blind, controlled clinical trial. Lancet 2005; 366 (9484): 463-471
  • 97 Aaron SD, Ferris W, Ramotar K, Vandemheen K, Chan F, Saginur R. Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 2002; 40 (11) 4172-4179
  • 98 Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 2003; 123 (05) 1495-1502
  • 99 Moskowitz SM, Foster JM, Emerson JC, Gibson RL, Burns JL. Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. J Antimicrob Chemother 2005; 56 (05) 879-886
  • 100 Yau YC, Ratjen F, Tullis E. et al. Randomized controlled trial of biofilm antimicrobial susceptibility testing in cystic fibrosis patients. J Cyst Fibros 2015; 14 (02) 262-266
  • 101 Somayaji R, Parkins MD, Shah A. et al; Antimicrobial Resistance in Cystic Fibrosis InternationalWorking Group. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review. J Cyst Fibros 2019; 18 (02) 236-243
  • 102 Moore RA, Hancock RE. Involvement of outer membrane of Pseudomonas cepacia in aminoglycoside and polymyxin resistance. Antimicrob Agents Chemother 1986; 30 (06) 923-926
  • 103 Lewin C, Doherty C, Govan J. In vitro activities of meropenem, PD 127391, PD 131628, ceftazidime, chloramphenicol, co-trimoxazole, and ciprofloxacin against Pseudomonas cepacia . Antimicrob Agents Chemother 1993; 37 (01) 123-125
  • 104 Aaron SD, Ferris W, Henry DA, Speert DP, Macdonald NE. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia . Am J Respir Crit Care Med 2000; 161 (4 Pt 1): 1206-1212
  • 105 Burns JL, Saiman L. Burkholderia cepacia infections in cystic fibrosis. Pediatr Infect Dis J 1999; 18 (02) 155-156
  • 106 Lang BJ, Aaron SD, Ferris W, Hebert PC, MacDonald NE. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with multiresistant strains of Pseudomonas aeruginosa . Am J Respir Crit Care Med 2000; 162 (06) 2241-2245
  • 107 Krueger TS, Clark EA, Nix DE. In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn Microbiol Infect Dis 2001; 41 (1-2): 71-78
  • 108 Saiman L, Chen Y, Tabibi S. et al. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J Clin Microbiol 2001; 39 (11) 3942-3945
  • 109 Treatment of pulmonary exacerbation of cystic fibrosis. Bethesda, MD: Cystic Fibrosis Foundation; 1997
  • 110 Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME. Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis 2005; 41 (02) 149-158
  • 111 McLaughlin FJ, Matthews Jr. WJ, Strieder DJ. et al. Clinical and bacteriological responses to three antibiotic regimens for acute exacerbations of cystic fibrosis: ticarcillin-tobramycin, azlocillin-tobramycin, and azlocillin-placebo. J Infect Dis 1983; 147 (03) 559-567
  • 112 Padoan R, Cambisano W, Costantini D. et al. Ceftazidime monotherapy vs. combined therapy in Pseudomonas pulmonary infections in cystic fibrosis. Pediatr Infect Dis J 1987; 6 (07) 648-653
  • 113 Master V, Roberts GW, Coulthard KP. et al. Efficacy of once-daily tobramycin monotherapy for acute pulmonary exacerbations of cystic fibrosis: a preliminary study. Pediatr Pulmonol 2001; 31 (05) 367-376
  • 114 Smith AL, Doershuk C, Goldmann D. et al. Comparison of a beta-lactam alone versus beta-lactam and an aminoglycoside for pulmonary exacerbation in cystic fibrosis. J Pediatr 1999; 134 (04) 413-421
  • 115 Balke B, Hogardt M, Schmoldt S, Hoy L, Weissbrodt H, Häussler S. Evaluation of the E test for the assessment of synergy of antibiotic combinations against multiresistant Pseudomonas aeruginosa isolates from cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2006; 25 (01) 25-30
  • 116 Smith S, Ratjen F, Remmington T, Waters V. Combination antimicrobial susceptibility testing for acute exacerbations in chronic infection of Pseudomonas aeruginosa in cystic fibrosis. Cochrane Database Syst Rev 2020; 5 (05) CD006961
  • 117 Aaron SD. Antibiotic synergy testing should not be routine for patients with cystic fibrosis who are infected with multiresistant bacterial organisms. Paediatr Respir Rev 2007; 8 (03) 256-261
  • 118 Flume PA, Mogayzel Jr PJ, Robinson KA. et al; Clinical Practice Guidelines for Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 2009; 180 (09) 802-808
  • 119 Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol 2019; 17 (08) 479-496
  • 120 Jorth P, Staudinger BJ, Wu X. et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 2015; 18 (03) 307-319
  • 121 Ashish A, Paterson S, Mowat E, Fothergill JL, Walshaw MJ, Winstanley C. Extensive diversification is a common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. J Cyst Fibros 2013; 12 (06) 790-793
  • 122 Fothergill JL, Mowat E, Ledson MJ, Walshaw MJ, Winstanley C. Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol 2010; 59 (pt 4): 472-481
  • 123 Williams D, Evans B, Haldenby S. et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med 2015; 191 (07) 775-785
  • 124 VanDevanter DR, Morris NJ, Konstan MW. IV-treated pulmonary exacerbations in the prior year: an important independent risk factor for future pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2016; 15 (03) 372-379
  • 125 West NE, Beckett VV, Jain R. et al; STOP investigators. Standardized Treatment of Pulmonary Exacerbations (STOP) study: Physician treatment practices and outcomes for individuals with cystic fibrosis with pulmonary Exacerbations. J Cyst Fibros 2017; 16 (05) 600-606
  • 126 Dovey M, Aitken ML, Emerson J, McNamara S, Waltz DA, Gibson RL. Oral corticosteroid therapy in cystic fibrosis patients hospitalized for pulmonary exacerbation: a pilot study. Chest 2007; 132 (04) 1212-1218
  • 127 Frost F, Young GR, Wright L. et al. The clinical and microbiological utility of inhaled aztreonam lysine for the treatment of acute pulmonary exacerbations of cystic fibrosis: An open-label randomised crossover study (AZTEC-CF). J Cyst Fibros 2021; 20 (06) 994-1002
  • 128 Smyth A, Tan KH, Hyman-Taylor P. et al; TOPIC Study Group. Once versus three-times daily regimens of tobramycin treatment for pulmonary exacerbations of cystic fibrosis–the TOPIC study: a randomised controlled trial. Lancet 2005; 365 (9459): 573-578
  • 129 Smyth A, Lewis S, Bertenshaw C, Choonara I, McGaw J, Watson A. Case-control study of acute renal failure in patients with cystic fibrosis in the UK. Thorax 2008; 63 (06) 532-535
  • 130 Öbrink-Hansen K, Jensen-Fangel S, Brock B. et al. Piperacillin/tazobactam continuous infusion at 12G/1.5G per day in CF patients results in target plasma-concentrations. J Cyst Fibros 2016; 15 (02) e13-e14
  • 131 Riethmueller J, Junge S, Schroeter TW. et al. Continuous vs thrice-daily ceftazidime for elective intravenous antipseudomonal therapy in cystic fibrosis. Infection 2009; 37 (05) 418-423
  • 132 Hubert D, Le Roux E, Lavrut T. et al. Continuous versus intermittent infusions of ceftazidime for treating exacerbation of cystic fibrosis. Antimicrob Agents Chemother 2009; 53 (09) 3650-3656
  • 133 Sagel SD, Thompson V, Chmiel JF. et al. Effect of treatment of cystic fibrosis pulmonary exacerbations on systemic inflammation. Ann Am Thorac Soc 2015; 12 (05) 708-717
  • 134 Heltshe SL, Goss CH, Thompson V. et al. Short-term and long-term response to pulmonary exacerbation treatment in cystic fibrosis. Thorax 2016; 71 (03) 223-229
  • 135 VanDevanter DR, Heltshe SL, Spahr J. et al; STOP Study Group. Rationalizing endpoints for prospective studies of pulmonary exacerbation treatment response in cystic fibrosis. J Cyst Fibros 2017; 16 (05) 607-615
  • 136 Sanders DB, Solomon GM, Beckett VV. et al; STOP Study Group. Standardized Treatment of Pulmonary Exacerbations (STOP) study: observations at the initiation of intravenous antibiotics for cystic fibrosis pulmonary exacerbations. J Cyst Fibros 2017; 16 (05) 592-599
  • 137 Heltshe SL, West NE, VanDevanter DR. et al; STOP Study Group. Study design considerations for the Standardized Treatment of Pulmonary Exacerbations 2 (STOP2): a trial to compare intravenous antibiotic treatment durations in CF. Contemp Clin Trials 2018; 64: 35-40
  • 138 Quittner AL, Modi AC, Wainwright C, Otto K, Kirihara J, Montgomery AB. Determination of the minimal clinically important difference scores for the Cystic Fibrosis Questionnaire-Revised respiratory symptom scale in two populations of patients with cystic fibrosis and chronic Pseudomonas aeruginosa airway infection. Chest 2009; 135 (06) 1610-1618
  • 139 VanDevanter DR, Pasta DJ, Konstan MW. Treatment and demographic factors affecting time to next pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 2015; 14 (06) 763-769
  • 140 Collaco JM, Green DM, Cutting GR, Naughton KM, Mogayzel Jr PJ. Location and duration of treatment of cystic fibrosis respiratory exacerbations do not affect outcomes. Am J Respir Crit Care Med 2010; 182 (09) 1137-1143
  • 141 VanDevanter DR, O'Riordan MA, Blumer JL, Konstan MW. Assessing time to pulmonary function benefit following antibiotic treatment of acute cystic fibrosis exacerbations. Respir Res 2010; 11 (01) 137
  • 142 Waters V, Stanojevic S, Klingel M. et al. Prolongation of antibiotic treatment for cystic fibrosis pulmonary exacerbations. J Cyst Fibros 2015; 14 (06) 770-776
  • 143 Cystic Fibrosis Foundation Patient Registry 2011 Annual Data Report to the Center Directors 2012
  • 144 Flume PA, Wainwright CE, Elizabeth Tullis D. et al. Recovery of lung function following a pulmonary exacerbation in patients with cystic fibrosis and the G551D-CFTR mutation treated with ivacaftor. J Cyst Fibros 2018; 17 (01) 83-88
  • 145 Wolter JM, Bowler SD, Nolan PJ, McCormack JG. Home intravenous therapy in cystic fibrosis: a prospective randomized trial examining clinical, quality of life and cost aspects. Eur Respir J 1997; 10 (04) 896-900
  • 146 Schechter MS, VanDevanter DR, Pasta DJ, Short SA, Morgan WJ, Konstan MW. Scientific Advisory Group and the Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Treatment setting and outcomes of cystic fibrosis pulmonary exacerbations. Ann Am Thorac Soc 2018; 15 (02) 225-233
  • 147 Bryant JM, Grogono DM, Rodriguez-Rincon D. et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016; 354 (6313): 751-757
  • 148 Sanders DB, Khan U, Heltshe SL. et al; STOP2 Investigators. Association of site of treatment with clinical outcomes following intravenous antimicrobial treatment of a pulmonary exacerbation. J Cyst Fibros 2022; 21 (04) 574-580
  • 149 Nash EF, Choyce J, Carrolan V. et al. A prospective randomised controlled mixed-methods pilot study of home monitoring in adults with cystic fibrosis. Ther Adv Respir Dis 2022; 16: 175346662 11070133
  • 150 Lechtzin N, Mayer-Hamblett N, West NE. et al. Home monitoring in CF to identify and treat acute pulmonary exacerbations: eICE study results. Am J Respir Crit Care Med 2017; DOI: 10.1164/rccm.201610-2172OC.
  • 151 Wildman MJ, O'Cathain A, Maguire C. et al; CFHealthHub Study Team. Self-management intervention to reduce pulmonary exacerbations by supporting treatment adherence in adults with cystic fibrosis: a randomised controlled trial. Thorax 2022; 77 (05) 461-469
  • 152 McElvaney OJ, Curley GF, Rose-John S, McElvaney NG. Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respir Med 2021; 9 (06) 643-654
  • 153 McCarthy C, Dunlea DM, Saldova R. et al. Glycosylation repurposes alpha-1 antitrypsin for resolution of community-acquired pneumonia. Am J Respir Crit Care Med 2018; 197 (10) 1346-1349
  • 154 McElvaney OJ, McEvoy NL, McElvaney OF. et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med 2020; 202 (06) 812-821
  • 155 McElvaney OJ, McEvoy NL, Boland F. et al. A randomized, double-blind, placebo-controlled trial of intravenous alpha-1 antitrypsin for ARDS secondary to COVID-19. Med (N Y) 2022; 3 (04) 233-248.e6
  • 156 Sagel SD, Kapsner R, Osberg I, Sontag MK, Accurso FJ. Airway inflammation in children with cystic fibrosis and healthy children assessed by sputum induction. Am J Respir Crit Care Med 2001; 164 (8, pt 1): 1425-1431
  • 157 Gilljam H, Malmborg AS, Strandvik B. Conformity of bacterial growth in sputum and contamination free endobronchial samples in patients with cystic fibrosis. Thorax 1986; 41 (08) 641-646
  • 158 Aaron SD, Kottachchi D, Ferris WJ. et al. Sputum versus bronchoscopy for diagnosis of Pseudomonas aeruginosa biofilms in cystic fibrosis. Eur Respir J 2004; 24 (04) 631-637
  • 159 Thomassen MJ, Klinger JD, Badger SJ, van Heeckeren DW, Stern RC. Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis. J Pediatr 1984; 104 (03) 352-356
  • 160 Kolak M, Karpati F, Monstein HJ, Jonasson J. Molecular typing of the bacterial flora in sputum of cystic fibrosis patients. Int J Med Microbiol 2003; 293 (04) 309-317
  • 161 Pedersen SK, Sloane AJ, Prasad SS. et al. An immunoproteomic approach for identification of clinical biomarkers for monitoring disease: application to cystic fibrosis. Mol Cell Proteomics 2005; 4 (08) 1052-1060
  • 162 Rogers GB, Hart CA, Mason JR, Hughes M, Walshaw MJ, Bruce KD. Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2003; 41 (08) 3548-3558
  • 163 van Belkum A, Renders NH, Smith S, Overbeek SE, Verbrugh HA. Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients. FEMS Immunol Med Microbiol 2000; 27 (01) 51-57
  • 164 Bazan JF. Unraveling the structure of IL-2. Science 1992; 257 (5068): 410-413
  • 165 Beier J, Beeh KM, Kornmann O, Buhl R. Induced sputum methodology: validity and reproducibility of total glutathione measurement in supernatant of healthy and asthmatic individuals. J Lab Clin Med 2004; 144 (01) 38-44
  • 166 Cleland WW. Dithiothreitol, a New Protective Reagent for Sh Groups. Biochemistry 1964; 3: 480-482
  • 167 Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 160 (5, pt 1): 1635-1639
  • 168 Dauletbaev N, Rickmann J, Viel K, Buhl R, Wagner TO, Bargon J. Glutathione in induced sputum of healthy individuals and patients with asthma. Thorax 2001; 56 (01) 13-18
  • 169 Dauletbaev N, Rickmann J, Viel K. et al. Antioxidant properties of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 2005; 288 (05) L903-L909
  • 170 Hector A, Jonas F, Kappler M, Feilcke M, Hartl D, Griese M. Novel method to process cystic fibrosis sputum for determination of oxidative state. Respiration 2010; 80 (05) 393-400
  • 171 Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science 1991; 253 (5025): 1278-1280
  • 172 Kelly MM, Keatings V, Leigh R. et al. Analysis of fluid-phase mediators. Eur Respir J Suppl 2002; 37: 24s-39s
  • 173 Kim JS, Hackley GH, Okamoto K, Rubin BK. Sputum processing for evaluation of inflammatory mediators. Pediatr Pulmonol 2001; 32 (02) 152-158
  • 174 Kuhn KS, Krasselt AI, Fürst P. Glutathione and glutathione metabolites in small tissue samples and mucosal biopsies. Clin Chem 2000; 46 (07) 1003-1005
  • 175 Louis R, Shute J, Goldring K. et al. The effect of processing on inflammatory markers in induced sputum. Eur Respir J 1999; 13 (03) 660-667
  • 176 Pandit J, Bohm A, Jancarik J, Halenbeck R, Koths K, Kim SH. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. Science 1992; 258 (5086): 1358-1362
  • 177 Smith LJ, Redfield C, Boyd J. et al. Human interleukin 4. The solution structure of a four-helix bundle protein. J Mol Biol 1992; 224 (04) 899-904
  • 178 Wang F, He B. The effect of dithiothreitol on chemotactic factors in induced sputum of chronic obstructive pulmonary disease patients. Respiration 2009; 78 (02) 217-222
  • 179 Woolhouse IS, Bayley DL, Stockley RA. Effect of sputum processing with dithiothreitol on the detection of inflammatory mediators in chronic bronchitis and bronchiectasis. Thorax 2002; 57 (08) 667-671
  • 180 Vaddi KKM, Newton RC. The Chemokine Facts Book. San Diego, CA.: Academic Press; 1997
  • 181 Aggarwal BBGJ. Human Cytokines: Handbook for Basic and Clinical Research. Boston, MA: Blackwell Scientific Publications; 1998
  • 182 Fayon M, Kent L, Bui S, Dupont L, Sermet I. European Cystic Fibrosis Society Clinical Trial Network Standardisation Committee. Clinimetric properties of bronchoalveolar lavage inflammatory markers in cystic fibrosis. Eur Respir J 2014; 43 (02) 610-626
  • 183 Fouret P, du Bois RM, Bernaudin JF, Takahashi H, Ferrans VJ, Crystal RG. Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 1989; 169 (03) 833-845
  • 184 Zimmer M, Medcalf RL, Fink TM, Mattmann C, Lichter P, Jenne DE. Three human elastase-like genes coordinately expressed in the myelomonocyte lineage are organized as a single genetic locus on 19pter. Proc Natl Acad Sci U S A 1992; 89 (17) 8215-8219
  • 185 Ishak A, Stick SM, Turkovic L. et al; AREST CF. BAL inflammatory markers can predict pulmonary exacerbations in children with cystic fibrosis. Chest 2020; 158 (06) 2314-2322
  • 186 Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. Proc Am Thorac Soc 2007; 4 (04) 406-417
  • 187 McElvaney OJ, Gunaratnam C, Reeves EP, McElvaney NG. A specialized method of sputum collection and processing for therapeutic interventions in cystic fibrosis. J Cyst Fibros 2019; 18 (02) 203-211
  • 188 Waters VJ, Stanojevic S, Sonneveld N. et al. Factors associated with response to treatment of pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 2015; 14 (06) 755-762
  • 189 Hoppe JE, Wagner BD, Accurso FJ, Zemanick ET, Sagel SD. Characteristics and outcomes of oral antibiotic treated pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 2018; 17 (06) 760-768
  • 190 Sommerhoff CP, Krell RD, Williams JL, Gomes BC, Strimpler AM, Nadel JA. Inhibition of human neutrophil elastase by ICI 200,355. Eur J Pharmacol 1991; 193 (02) 153-158
  • 191 Stockley RA. Role of inflammation in respiratory tract infections. Am J Med 1995; 99 (6B): 8S-13S
  • 192 Fick Jr RB, Naegel GP, Squier SU, Wood RE, Gee JB, Reynolds HY. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis. J Clin Invest 1984; 74 (01) 236-248
  • 193 Berger M, Sorensen RU, Tosi MF, Dearborn DG, Döring G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J Clin Invest 1989; 84 (04) 1302-1313
  • 194 Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 1990; 86 (01) 300-308
  • 195 Hartl D, Latzin P, Hordijk P. et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat Med 2007; 13 (12) 1423-1430
  • 196 Le Gars M, Descamps D, Roussel D. et al. Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am J Respir Crit Care Med 2013; 187 (02) 170-179
  • 197 Geraghty P, Rogan MP, Greene CM. et al. Neutrophil elastase up-regulates cathepsin B and matrix metalloprotease-2 expression. J Immunol 2007; 178 (09) 5871-5878
  • 198 Walsh DE, Greene CM, Carroll TP. et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J Biol Chem 2001; 276 (38) 35494-35499
  • 199 Hubbard RC, Fells G, Gadek J, Pacholok S, Humes J, Crystal RG. Neutrophil accumulation in the lung in alpha 1-antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest 1991; 88 (03) 891-897
  • 200 DeBoer EM, Swiercz W, Heltshe SL. et al. Automated CT scan scores of bronchiectasis and air trapping in cystic fibrosis. Chest 2014; 145 (03) 593-603
  • 201 Sagel SD, Sontag MK, Wagener JS, Kapsner RK, Osberg I, Accurso FJ. Induced sputum inflammatory measures correlate with lung function in children with cystic fibrosis. J Pediatr 2002; 141 (06) 811-817
  • 202 Korkmaz B, Attucci S, Hazouard E. et al. Discriminating between the activities of human neutrophil elastase and proteinase 3 using serpin-derived fluorogenic substrates. J Biol Chem 2002; 277 (42) 39074-39081
  • 203 Korkmaz B, Attucci S, Juliano MA. et al. Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates. Nat Protoc 2008; 3 (06) 991-1000
  • 204 Shoemark A, Cant E, Carreto L. et al. A point-of-care neutrophil elastase activity assay identifies bronchiectasis severity, airway infection and risk of exacerbation. Eur Respir J 2019; 53 (06) 53
  • 205 Chalmers JD, Haworth CS, Metersky ML. et al; WILLOW Investigators. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis. N Engl J Med 2020; 383 (22) 2127-2137
  • 206 Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463-516
  • 207 Dunsmore SE, Saarialho-Kere UK, Roby JD. et al. Matrilysin expression and function in airway epithelium. J Clin Invest 1998; 102 (07) 1321-1331
  • 208 Gaggar A, Li Y, Weathington N. et al. Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. Am J Physiol Lung Cell Mol Physiol 2007; 293 (01) L96-L104
  • 209 Ratjen F, Hartog CM, Paul K, Wermelt J, Braun J. Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax 2002; 57 (11) 930-934
  • 210 Xu X, Abdalla T, Bratcher PE. et al. Doxycycline improves clinical outcomes during cystic fibrosis exacerbations. Eur Respir J 2017; 49 (04) 49
  • 211 Roderfeld M, Rath T, Schulz R. et al. Serum matrix metalloproteinases in adult CF patients: Relation to pulmonary exacerbation. J Cyst Fibros 2009; 8 (05) 338-347
  • 212 Francoeur C, Denis M. Nitric oxide and interleukin-8 as inflammatory components of cystic fibrosis. Inflammation 1995; 19 (05) 587-598
  • 213 McElvaney OJ, Zaslona Z, Becker-Flegler K. et al. Specific inhibition of the NLRP3 inflammasome as an antiinflammatory strategy in cystic fibrosis. Am J Respir Crit Care Med 2019; 200 (11) 1381-1391
  • 214 Riquelme SA, Lozano C, Moustafa AM. et al. CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Sci Transl Med 2019; 11 (499) 11
  • 215 McElvaney OJ, O'Connor E, McEvoy NL. et al. Alpha-1 antitrypsin for cystic fibrosis complicated by severe cytokinemic COVID-19. J Cyst Fibros 2021; 20 (01) 31-35
  • 216 Cosgrove S, Chotirmall SH, Greene CM, McElvaney NG. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway. J Biol Chem 2011; 286 (09) 7692-7704
  • 217 Greene CM, Carroll TP, Smith SG. et al. TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J Immunol 2005; 174 (03) 1638-1646
  • 218 Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros 2010; 9 (03) 193-198
  • 219 Rowe SM, Jackson PL, Liu G. et al. Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008; 178 (08) 822-831
  • 220 Gray RD, Duncan A, Noble D. et al. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 2010; 137 (03) 635-641
  • 221 Leonardi S, Parisi GF, Capizzi A. et al. YKL-40 as marker of severe lung disease in cystic fibrosis patients. J Cyst Fibros 2016; 15 (05) 583-586
  • 222 Hector A, Kormann MS, Mack I. et al. The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease. PLoS One 2011; 6 (09) e24399
  • 223 Shoki AH, Mayer-Hamblett N, Wilcox PG, Sin DD, Quon BS. Systematic review of blood biomarkers in cystic fibrosis pulmonary exacerbations. Chest 2013; 144 (05) 1659-1670
  • 224 VanDevanter DR, Heltshe SL, Skalland M. et al. C-reactive protein (CRP) as a biomarker of pulmonary exacerbation presentation and treatment response. J Cyst Fibros 2022; 21 (04) 588-593
  • 225 Eichler I, Nilsson M, Rath R, Enander I, Venge P, Koller DY. Human neutrophil lipocalin, a highly specific marker for acute exacerbation in cystic fibrosis. Eur Respir J 1999; 14 (05) 1145-1149
  • 226 Horsley AR, Davies JC, Gray RD. et al. Changes in physiological, functional and structural markers of cystic fibrosis lung disease with treatment of a pulmonary exacerbation. Thorax 2013; 68 (06) 532-539
  • 227 Nixon LS, Yung B, Bell SC, Elborn JS, Shale DJ. Circulating immunoreactive interleukin-6 in cystic fibrosis. Am J Respir Crit Care Med 1998; 157 (6, pt 1): 1764-1769
  • 228 Weathington NM, van Houwelingen AH, Noerager BD. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 2006; 12 (03) 317-323
  • 229 Keating D, Marigowda G, Burr L. et al; VX16-445-001 Study Group. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018; 379 (17) 1612-1620
  • 230 Kirwan L, Fletcher G, Harrington M. et al. Longitudinal trends in real-world outcomes after initiation of ivacaftor. a cohort study from the Cystic Fibrosis Registry of Ireland. Ann Am Thorac Soc 2019; 16 (02) 209-216
  • 231 Middleton PG, Mall MA, Dřevínek P. et al; VX17-445-102 Study Group. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single phe508del Allele. N Engl J Med 2019; 381 (19) 1809-1819
  • 232 Heijerman HGM, McKone EF, Downey DG. et al; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 2019; 394 (10212): 1940-1948
  • 233 Keogh RH, Cosgriff R, Andrinopoulou ER. et al. Projecting the impact of triple CFTR modulator therapy on intravenous antibiotic requirements in cystic fibrosis using patient registry data combined with treatment effects from randomised trials. Thorax 2022; 77 (09) 873-881
  • 234 Stanojevic S, Vukovojac K, Sykes J, Ratjen F, Tullis E, Stephenson AL. Projecting the impact of delayed access to elexacaftor/tezacaftor/ivacaftor for people with Cystic Fibrosis. J Cyst Fibros 2021; 20 (02) 243-249
  • 235 Heltshe SL, Mayer-Hamblett N, Burns JL. et al; GOAL (the G551D Observation-AL) Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis 2015; 60 (05) 703-712
  • 236 Frost FJ, Nazareth DS, Charman SC, Winstanley C, Walshaw MJ. Ivacaftor Is associated with reduced lung infection by key cystic fibrosis pathogens. a cohort study Using National Registry Data. Ann Am Thorac Soc 2019; 16 (11) 1375-1382
  • 237 Burgel PR, Durieu I, Chiron R. et al; French Cystic Fibrosis Reference Network Study Group. Rapid Improvement after starting elexacaftor-tezacaftor-ivacaftor in patients with cystic fibrosis and advanced pulmonary disease. Am J Respir Crit Care Med 2021; 204 (01) 64-73
  • 238 Jiang M, Karasawa T, Steyger PS. Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci 2017; 11: 308