Int J Sports Med 2017; 38(09): 666-674
DOI: 10.1055/s-0043-110680
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Cardiovascular and Autonomic Responses to a Maximal Exercise Test in Elite Youngsters

Cristina Blasco-Lafarga
1   Physical Education and Sports Department, University of Valencia, Valencia, Spain
,
Borja Camarena
2   UIRFIDE (Sport Performance and Physical Fitness Research Group), University of Valencia, Valencia, Spain
,
Manuel Mateo-March
3   Miguel Hernández University of Elche, Alicante, Spain
› Author Affiliations
Further Information

Publication History



accepted after revision 05 April 2017

Publication Date:
13 July 2017 (online)

Abstract

To analyze cardiovascular and autonomic responses in elite youngsters, 13 male cyclists (15.43±0.51 years) performed a graded-test until voluntary exhaustion. Oxygen consumption (VO2), blood lactate (BLa), arterial oxygen saturation (SaO2), respiratory exchange ratio (RER) and rating of perceived exertion (RPE) were collected, while heart rate (HR) was registered for heart rate variability (HRV) analyses, looking for linear and nonlinear comparisons. Cyclists reached maximal exertion [RPE: 19.14±0.94; BLa: 8.92±2.51 mmol.L−1; RER: 1.04±0.03; SaO2: 92.43±2.5%] and high-level performance (4.41±0.46 W·Kg−1; 60.77±6.87 ml·Kg·min−1) once over 95% of age-predicted HRmax. VO2 and RPE increased, and RR intervals (RRi) decreased (p<0.005), whereas only the short-term scaling exponent of the Detrended Fluctuation Analysis technique (DFA1) displayed similar adaptive changes regarding intensity (p=0.011). After controlling for W·Kg−1 and RRi, DFA1100% (0.260±0.084) showed large-negative correlations with VO2max (r=−0.83; p<0.05) and RPEmax (r=−0.79; p<0.05), suggesting a strong association between the reduction in self-similar properties of the cardiac signal and the capacity to elicit at maximum in youths. Overall-HRV (lnRMSSD) and short-term variability (lnSD1) did not show any association at maximum, or significant differences regarding intensity. DFA1 might reflect ANS-CNS linkage related to cardiac respiratory controls through exercise, becoming a complementary criterion for VO2max testing in youths.

 
  • References

  • 1 Allen H, Coggan AR. Training and racing with a power meter. Colorado, USA: VeloPress; 2010
  • 2 Atkinson G. International Journal of Sports Medicine: Progress and innovation in cycling science 2001-2007. Int J Sports Med 2007; 28: 807-808
  • 3 Bertucci W, Duc S, Villerius V, Pernin JN, Grappe F. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM Device. Int J Sports Med 2005; 26: 868-873
  • 4 Blasco-Lafarga C, Martinez-Navarro I, Mateo-March M. Is baseline cardiac autonomic modulation related to performance and physiological responses following a supramaximal judo test?. PloS one 2013; 8: e78584
  • 5 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381
  • 6 Buchheit M. Monitoring training status with HR measures: Do all roads lead to Rome? Front Physiol 2014; 5:
  • 7 Buchheit M, Mendez-Villanueva A, Quod MJ, Poulos N, Bourdon P. Determinants of the variability of heart rate measures during a competitive period in young soccer players. Eur J Appl Physiol 2010; 109: 869-878
  • 8 Candido N, Okuno N, da Silva C, Machado F, Nakamura F. Reliability of the heart rate variability threshold using visual inspection and dmax methods. Int J Sports Med 2015; 36: 1076-1080
  • 9 Casties JF, Mottet D, Le Gallais D. Nonlinear analyses of heart rate variability during heavy exercise and recovery in cyclists. Int J Sports Med 2006; 27: 780-785
  • 10 Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, N.J.: L. Erlbaum Associates; 1988
  • 11 Cooper DM, Kaplan MR, Baumgarten L, Weiler-Ravell D, Whipp BJ, Wasserman K. Coupling of ventilation and CO2 production during exercise in children. Pediatr Res 1987; 21: 568-572
  • 12 Cottin F, Medigue C, Lepretre PM, Papelier Y, Koralsztein JP, Billat V. Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 2004; 36: 594-600
  • 13 Fanchini M, Azzalin A, Castagna C, Schena F, Mccall A, Impellizzeri FM. Effect of bout duration on exercise intensity and technical performance of small-sided games in soccer. J Strength Cond Res 2011; 25: 453-458
  • 14 Ferguson CJ. An effect size primer: A guide for clinicians and researchers. Prof Psychol Res Pr 2009; 40: 532
  • 15 Garcia-Tabar I, Sánchez-Medina L, Aramendi JF, Ruesta M, Ibañez J, Gorostiaga EM. Heart rate variability thresholds predict lactate thresholds in professional world-class road cyclists. J Exerc Physiol Online 2013; 16: 38-50
  • 16 Giles D, Kelly J, Draper N. Alterations in autonomic cardiac modulation in response to normobaric hypoxia. Eur J Sport Sci 2016; 16: 1023-1031
  • 17 Guilkey JP, Overstreet M, Fernhall B, Mahon AD. Heart rate response and parasympathetic modulation during recovery from exercise in boys and men. Appl Physiol Nutr Metab 2014; 39: 969-975
  • 18 Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, Wysocki H. Correlations between the Poincare plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci 2007; 57: 63-71
  • 19 Harriss D, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
  • 20 Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev 2009; 33: 107-115
  • 21 Hautala AJ, Makikallio TH, Seppanen T, Huikuri HV, Tulppo MP. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging 2003; 23: 215-223
  • 22 Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sport 2000; 3: 414-433
  • 23 Karapetian GK, Engels HJ, Gretebeck RJ. Use of heart rate variability to estimate LT and VT. Int J Sports Med 2008; 29: 652-657
  • 24 Lane AM, Wilson MG, Whyte GP, Shave R. Physiological correlates of emotion-regulation during prolonged cycling performance. Appl Psychophysiol Biofeedback 2011; 36: 181-184
  • 25 Levine TR, Hullett CR. Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum Commun Res 2002; 28: 612-625
  • 26 Lucia A, Hoyos J, Chicharro JL. Physiology of professional road cycling. Sports Med 2001; 31: 325-337
  • 27 Lunt HC, Corbett J, Barwood MJ, Tipton MJ. Cycling cadence affects heart rate variability. Physiol Meas 2011; 32: 1133-1145
  • 28 Mahon AD, Duncan E, Howe A. Blood lactate and perceived exertion relative to ventilatory threshold: Boys versus men. Med Sci Sports Exerc 1997; Vol. 29: 5
  • 29 Mateo M, Blasco-Lafarga C, Martinez-Navarro I, Guzman JF, Zabala M. Heart rate variability and pre-competitive anxiety in BMX discipline. Eur J Appl Physiol 2012; 112: 113-123
  • 30 Mujika I, Padilla S. Physiological and performance characteristics of male professional road cyclists. Sports Med 2001; 31: 479-487
  • 31 Muyor JM, Lopez-Minarro PA, Alacid F. Spinal posture of thoracic and lumbar spine and pelvic tilt in highly trained cyclists. J Sports Sci Med 2011; 10: 355-361
  • 32 Nicolini P, Ciulla MM, De Asmundis C, Magrini F, Brugada P. The prognostic value of heart rate variability in the elderly, changing the perspective: From sympathovagal balance to chaos theory. Pacing Clin Electrophysiol 2012; 35: 622-638
  • 33 Nielsen H, Madsen P, Svendsen L, Roach R, Secher N. The influence of PaO~ 2, pH and SaO~ 2 on maximal oxygen uptake. Acta Physiol Scand 1998; 164: 89-98
  • 34 Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 2000; 10: 123-145
  • 35 Noakes TD. Time to move beyond a brainless exercise physiology: The evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab 2011; 36: 23-35
  • 36 Okano AH, Altimari LR, Simões HG, ACd Moraes, Nakamura FY, Cyrino ES, Burini RC. Comparison between anaerobic threshold determined by ventilatory variables and blood lactate response in cyclists. Rev Bras Med Esporte 2006; 12: 39-44
  • 37 Okano AH, Fontes EB, Montenegro RA, PdTV Farinatti, Cyrino ES, Li LM, Bikson M, Noakes TD. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med 2013; DOI: bjsports-2012-091658.
  • 38 Park SW, Brenneman MT, Cooke WH, Cordova A, Fogt DL. Determination of anaerobic threshold by heart rate or heart rate variability using discontinuous cycle ergometry. Int J Exerc Sci 2014; 7: 6
  • 39 Paschoal MA, Fontana CC. Method of heart rate variability threshold applied in obese and non-obese pre-adolescents. Arq Bras Cardiol 2011; 96: 450-456
  • 40 Peña M, Echeverria J, Garcia M, González-Camarena R. Applying fractal analysis to short sets of heart rate variability data. Med Biol Eng Comput 2009; 47: 709-717
  • 41 Perakakis P, Taylor M, Martinez-Nieto E, Revithi I, Vila J. Breathing frequency bias in fractal analysis of heart rate variability. Biol Psychol 2009; 82: 82-88
  • 42 Perkiömäki JS, Mäkikallio TH, Huikuri HV. Nonlinear analysis of heart rate variability: Fractal and complexity measures of heart rate behavior. Ann Noninvasive Electrocardiol 2000; 5: 179-187
  • 43 Rice SG. American Academy of Pediatrics Council on Sports M, Fitness. Medical conditions affecting sports participation. Pediatrics 2008; 121: 841-848
  • 44 Saboul D, Balducci P, Millet G, Pialoux V, Hautier C. A pilot study on quantification of training load: The use of HRV in training practice. Eur J Sport Sci 2015; DOI: 10.1080/17461391.2015.1004373. 1-10
  • 45 Saboul D, Pialoux V, Hautier C. The impact of breathing on HRV measurements: Implications for the longitudinal follow-up of athletes. Eur J Sport Sci 2013; 13: 534-542
  • 46 Sales MM, Campbell CS, Morais PK, Ernesto C, Soares-Caldeira LF, Russo P, Motta DF, Moreira SR, Nakamura FY, Simoes HG. Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetol Metab Syndr 2011; 3: 1
  • 47 Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, Schmidt G, Yamamoto Y, Gorenek B, Lip GY, Grassi G, Kudaiberdieva G, Fisher JP, Zabel M, Macfadyen R. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC working group and the european heart rhythm association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace: European pacing, arrhythmias, and cardiac electrophysiology: Journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 2015; DOI: 10.1093/europace/euv015.
  • 48 Scharhag-Rosenberger F, Carlsohn A, Cassel M, Mayer F, Scharhag J. How to test maximal oxygen uptake: A study on timing and testing procedure of a supramaximal verification test. Appl Physiol Nutr Metab 2011; 36: 153-160
  • 49 Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med Sci Sports Exerc 2007; 39: 1366-1373
  • 50 Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 2014; 5: 1040
  • 51 Shei R-J, Mickleborough TD. Relative contributions of central and peripheral factors in human muscle fatigue during exercise: A brief review. J Exerc Physiol Online 2013; 16: 1-17
  • 52 Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV – heart rate variability analysis software. Comput Methods Programs Biomed 2014; 113: 210-220
  • 53 Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T, Mäkikallio TH, Huikuri HV. Physiological background of the loss of fractal heart rate dynamics. Circulation 2005; 112: 314-319
  • 54 Yamamoto Y, Hughson RL, Nakamura Y. Autonomic nervous system responses to exercise in relation to ventilatory threshold. CHEST Journal 1992; 101: 206S-210S
  • 55 Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports Med 2008; 38: 401-423