Klin Padiatr 2017; 229(05): 267-273
DOI: 10.1055/s-0043-115223
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Genetic Polymorphisms as Predictive Markers of Response to Growth Hormone Therapy in Children with Growth Hormone Deficiency

Genetische Polymorphismen als prädiktive Marker des Ansprechens auf Wachstumshormontherapie bei Kindern mit Wachstumshormonmangel
Anna Maria Jung
1   Klinik für Allg. Pädiatrie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
,
Martin Zenker
2   Institut für Humangenetik, Otto von Guericke Universitat Magdeburg, Magdeburg, Germany
,
Christina Lißewski
2   Institut für Humangenetik, Otto von Guericke Universitat Magdeburg, Magdeburg, Germany
,
Denny Schanze
2   Institut für Humangenetik, Otto von Guericke Universitat Magdeburg, Magdeburg, Germany
,
Stefan Wagenpfeil
3   Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik (IMBEI), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
,
Tilman Robert Rohrer
4   Department of General Paediatrics and Neonatology, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
14 August 2017 (online)

Abstract

Objective Growth hormone (GH) deficiency (GHD) is commonly treated with recombinant human GH (rhGH). Individual response to rhGH therapy varies widely and there is evidence that variations in growth-related genes, e. g. the GH receptor (GHR) gene, may impact treatment response. We aimed to identify genetic polymorphisms which could serve as predictive markers of response to rhGH therapy.

Methods We conducted a genetic analysis of single nucleotide polymorphisms (SNPs) and the GHR exon 3 deletion in 101 paediatric GHD patients receiving rhGH. Patients were analysed for 13 known SNPs in 11 genes of the GH axis (SOS1, IGFR1, GAB1, LHX4, IGFBP3, GRB10, GHRHR, GHSR), growth plate (VDR, ESR1) and cell cycle (CDK4). Individual index of responsiveness (IoR) values were compared by genotype. We also analysed the potential association between the IoR and the GHR exon 3 deletion. IoRs were analysed by genotype by one-way analysis of variance and unpaired t-test.

Results Variations in two SNPs, rs2888586 (SOS1) and rs2069502 (CDK4), and the GHR exon 3 deletion were significantly associated with response to rhGH treatment.

Conclusions Genetic variations are potentially suitable as predictive markers of rhGH treatment response in GHD. Genetic analysis provides a starting point for individualised treatment of GHD.

Zusammenfassung

Zielsetzung Wachstumshormonmangel (growth hormone (GH) deficiency (GHD)) wird allgemein mit rekombinantem Wachstumshormon (recombinant human GH, rhGH) behandelt. Das individuelle Ansprechen auf die rhGH-Therapie variiert stark. Es gibt Hinweise darauf, dass Variationen in wachstumsrelevanten Genen, z. B. im Gen des GH-Rezeptors (GHR), das Therapieansprechen beeinflussen. Ziel dieser Studie war es, genetische Polymorphismen zu identifizieren, die als prädiktive Marker des Ansprechens auf eine rhGH-Therapie dienen könnten.

Methoden Es wurden 101 Kinder mit rhGH-behandeltem GH-Mangel genetisch auf das Vorliegen von Einzelnukleotid-Polymorphismen (single nucleotide polymorphisms (SNPs)) und einer Deletion im Exon 3 des GHR-Gens untersucht. Gesucht wurde nach 13 bekannten SNPs in 11 Genen der GH-Achse (SOS1, IGFR1, GAB1, LHX4, IGFBP3, GRB10, GHRHR, GHSR), der Epiphysenfuge (VDR, ESR1) und des Zellzyklus (CDK4). Die Werte für den Index der individuellen Ansprechbarkeit (individual index of responsiveness (IoR)) wurden nach Genotyp miteinander verglichen. Untersucht wurde auch eine potenzielle Assoziation zwischen IoR und GHR-Exon-3-Deletion. Die statistische IoR-Auswertung nach Genotyp erfolgte mithilfe einfaktorieller Varianzanalysen und t-Tests.

Ergebnisse Variationen in 2 SNPs, rs2888586 (SOS1) und rs2069502 (CDK4), sowie die GHR-exon-3 Deletion waren signifikant mit dem Ansprechen auf eine rhGH-Therapie assoziiert.

Schlussfolgerungen Genetische Variationen eignen sich bei GH-Mangel potenziell als prädiktive Marker des Ansprechens auf eine rhGH-Therapie. Eine genetische Analyse eignet sich als Ausgangspunkt für die individualisierte Behandlung eines GH-Mangels.

 
  • References

  • 1 Audi L, Carrascosa A, Esteban C. et al. The exon 3-deleted/full-length growth hormone receptor polymorphism does not influence the effect of puberty or growth hormone therapy on glucose homeostasis in short non-growth hormone-deficient small-for-gestational-age children: results from a two-year controlled prospective study. J Clin Endocrinol Metab 2008; 93: 2709-2715
  • 2 Bang P, Bjerknes R, Dahlgren J. et al. A comparison of different definitions of growth response in short prepubertal children treated with growth hormone. Horm Res Paediatr 2011; 75: 335-345
  • 3 Binder G, Brämswig JH, Kratsch J. et al. Diagnostic guidelines for growth hormone deficiency in childhood and adolescence. Kinder- und Jugendmedizin 2009; 9: 461-464
  • 4 Blum WF, Machinis K, Shavrikova EP. et al. The growth response to growth hormone (GH) treatment in children with isolated GH deficiency is independent of the presence of the exon 3-minus isoform of the GH receptor. J Clin Endocrinol Metab 2006; 91: 4171-4174
  • 5 Buzi F, Mella P, Pilotta A. et al. Growth hormone receptor polymorphisms. Endocr Dev 2007; 11: 28-35
  • 6 Cardoso DF, Martinelli Jr. CE, Campos VC. et al. Comparison between the growth response to growth hormone (GH) therapy in children with partial GH insensitivity or mild GH deficiency. Arq Bras Endocrinol Metabol 2014; 58: 23-29
  • 7 Clayton P, Chatelain P, Tato L. et al. A pharmacogenomic approach to the treatment of children with GH deficiency or Turner syndrome. Eur J Endocrinol 2013; 169: 277-289
  • 8 Corazzini V, Salvatori R. Molecular and clinical aspects of GHRH receptor mutations. Endocr Dev 2013; 24: 106-117
  • 9 Costalonga EF, Antonini SR, Guerra-Junior G. et al. The -202A allele of insulin-like growth factor binding protein-3 (IGFBP3) promoter polymorphism is associated with higher IGFBP-3 serum levels and better growth response to growth hormone treatment in patients with severe growth hormone deficiency. J Clin Endocrinol Metab 2009; 94: 588-595
  • 10 D’Aloisio AA, Schroeder JC, North KE. et al. IGF-I and IGFBP-3 polymorphisms in relation to circulating levels among African American and Caucasian women. Cancer Epidemiol Biomarkers Prev 2009; 18: 954-966
  • 11 Dempfle A, Wudy SA, Saar K. et al. Evidence for involvement of the vitamin D receptor gene in idiopathic short stature via a genome-wide linkage study and subsequent association studies. Hum Mol Genet 2006; 15: 2772-2783
  • 12 Dos Santos C, Essioux L, Teinturier C. et al. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone. Nat Genet 2004; 36: 720-724
  • 13 Johansson A, Jonasson I, Gyllensten U. Extended haplotypes in the growth hormone releasing hormone receptor gene (GHRHR) are associated with normal variation in height. PLoS One 2009; 4: e4464
  • 14 Jorge AA, Marchisotti FG, Montenegro LR. et al. Growth hormone (GH) pharmacogenetics: influence of GH receptor exon 3 retention or deletion on first-year growth response and final height in patients with severe GH deficiency. J Clin Endocrinol Metab 2006; 91: 1076-1080
  • 15 Lango Allen H, Estrada K, Lettre G. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467: 832-838
  • 16 Machinis K, Pantel J, Netchine I. et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 2001; 69: 961-968
  • 17 Minamitani K, Takahashi Y, Minagawa M. et al. Difference in height associated with a translation start site polymorphism in the vitamin D receptor gene. Pediatr Res 1998; 44: 628-632
  • 18 Pantel J, Machinis K, Sobrier ML. et al. Species-specific alternative splice mimicry at the growth hormone receptor locus revealed by the lineage of retroelements during primate evolution. J Biol Chem 2000; 275: 18664-18669
  • 19 Park P, Cohen P. The role of insulin-like growth factor I monitoring in growth hormone-treated children. Horm Res 2004; 62 (Suppl. 01) 59-65
  • 20 Patel L, Clayton PE. Predicting response to growth hormone treatment. Indian J Pediatr 2012; 79: 229-237
  • 21 Pierre S, Bats AS, Coumoul X. Understanding SOS (Son of Sevenless). Biochem Pharmacol 2011; 82: 1049-1056
  • 22 Preece MA, Pan H, Ratcliffe SG. Auxological aspects of male and female puberty. Acta Paediatr Suppl 1992; 383: 11-13 discussion 14
  • 23 Ranke MB, Lindberg A, Chatelain P. et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. KIGS International Board. Kabi Pharmacia International Growth Study. J Clin Endocrinol Metab 1999; 84: 1174-1183
  • 24 Raychaudhuri S, Plenge RM, Rossin EJ. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet 2009; 5: e1000534
  • 25 Rogol AD, Cohen P, Weng W. et al. Prepubertal children with growth hormone deficiency treated for four years with growth hormone experience dose-dependent increase in height, but not in the rate of puberty initiation. Horm Res Paediatr 2013; 80: 28-37
  • 26 Rosenfeld RG, Buckway C, Selva K. et al. Insulin-like growth factor (IGF) parameters and tools for efficacy: the IGF-I generation test in children. Horm Res 2004; 62 (Suppl. 01) 37-43
  • 27 Stevens A, Clayton P, Tato L. et al. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. Pharmacogenomics J 2014; 14: 54-62
  • 28 Wassenaar MJ, Dekkers OM, Pereira AM. et al. Impact of the exon 3-deleted growth hormone (GH) receptor polymorphism on baseline height and the growth response to recombinant human GH therapy in GH-deficient (GHD) and non-GHD children with short stature: a systematic review and meta-analysis. J Clin Endocrinol Metab 2009; 94: 3721-3730
  • 29 Watkins-Chow DE, Camper SA. How many homeobox genes does it take to make a pituitary gland?. Trends Genet 1998; 14: 284-290
  • 30 Wit JM, Ranke MB, Albertsson-Wikland K. et al. Personalized approach to growth hormone treatment: clinical use of growth prediction models. Horm Res Paediatr 2013; 79: 257-270
  • 31 Zenker M, Horn D, Wieczorek D. et al. SOS1 is the second most common Noonan gene but plays no major role in cardio-facio-cutaneous syndrome. J Med Genet 2007; 44: 651-656