OP-Journal 2017; 33(03): 248-256
DOI: 10.1055/s-0043-115249
Fachwissen
Georg Thieme Verlag KG Stuttgart · New York

Osteoporotische Wirbelkörperfraktur

Osteoporotic Fracture of Vertebral Bodies
René Hartensuer
,
Michael J. Raschke
Further Information

Publication History

Publication Date:
17 January 2018 (online)

Zusammenfassung

Die Osteoporose ist ein zunehmendes Problem der muskuloskeletalen Medizin. Neben einer zunehmenden Inzidenz im Alter ist ein weiteres epidemiologisches Phänomen zu beobachten. Aktuell werden im höheren Alter zunehmend komplexere Verletzungsmuster beschrieben. Eine Osteoporose kann also zum einen zu Spontanfrakturen (Sinterung) führen, zum anderen als koinzidenteller Faktor von Bagatelltraumen wie auch von „echten“ traumatischen (hochenergetischen) Verletzungen auftreten. Die diagnostischen Möglichkeiten, zwischen diesen Entitäten zu unterscheiden, stellen den Behandler hierbei vor eine gewisse Herausforderung. Eine valide Klassifikation, die den Besonderheiten der Verletzungen der osteoporotischen Wirbelsäule Rechnung trägt, ist leider noch nicht etabliert. Die prinzipiellen Behandlungsziele und -prinzipien unterscheiden sich bei den Wirbelkörperfrakturen bei Osteoporose nicht wesentlich von den sonstigen Prinzipien beim Knochengesunden. Dennoch bietet die osteoporotische Wirbelsäule besondere Herausforderungen. Hierbei besteht die Möglichkeit, den Wirbelkörper selbst zu stabilisieren. Dies erfolgt oft kombiniert mit einer intravertebralen Aufrichtung und dem Einfüllen von PMMA oder alternativen Substanzen. Weiter kann mittels Pedikelschrauben das Bewegungssegment stabilisiert werden. Der Halt der Schrauben im Wirbelkörper kann hierbei ebenfalls mit PMMA verbessert werden. Eine ventrale Abstützung kann entweder durch einen weiteren ventralen Eingriff oder über eine Kombination von augmentierenden Verfahren des frakturierten Wirbelkörpers mit der dorsalen Instrumentierung erreicht werden. Diese mannigfaltigen therapeutischen Möglichkeiten erfordern ein differenziertes Vorgehen. Letztlich darf bei jeglicher chirurgischen Therapie die Behandlung der Grunderkrankung Osteoporose nicht vergessen werden.

Abstract

Osteoporosis is an increasing problem in musculoskeletal medicine. In addition to the increasing incidence of osteoporosis in the elderly, another epidemiological phenomenon has been observed. Increasingly complex injury patterns are currently being reported in elderly people. Osteoporosis can lead to spontaneous fractures (sintering), but may coincide with trivial trauma, as well as with „real“ traumatic (high-energy) injuries. The diagnostic possibilities to distinguish between these entities can a challenge for the practitioner. A valid classification, which takes account of the special features of the injuries of the osteoporotic spine, is unfortunately not yet established. The basic treatment objectives and principles for the vertebral body fractures in osteoporosis should not differ significantly from those principles of applicable to patients without osteoporosis. However, the osteoporotic spine offers special challenges. One possibility is to stabilise the vertebral body itself. This is often combined with restauration of the vertebral body and filling it with PMMA or alternative substances. Furthermore, the motion segment can be stabilised by means of pedicle screws. Anchorage of the screws in the osteoporotic vertebral body can also be improved by PMMA. Anterior support may be achieved, either by additional ventral intervention or by posterior combination of augmented treatment of the fractured vertebral body with dorsal instrumentation. These diverse therapeutic possibilities require a differentiated approach to treat the variety of different injuries in osteoporotic spines. Ultimately, the treatment of the underlying osteoporosis must not be forgotten in any surgical treatment.

 
  • Literatur

  • 1 Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17: 1726-1733
  • 2 Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury 2006; 37: 691-697
  • 3 Hadji P, Klein S, Gothe H. et al. The epidemiology of osteoporosis–Bone Evaluation Study (BEST): an analysis of routine health insurance data. Dtsch Arztebl Int 2013; 110: 52-57
  • 4 Ferrari S, Bianchi ML, Eisman JA. et al. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int 2012; 23: 2735-2748
  • 5 Jiang G, Luo J, Pollintine P. et al. Vertebral fractures in the elderly may not always be “osteoporotic”. Bone 2010; 47: 111-116
  • 6 Vaccaro AR, Oner C, Kepler CK. et al. AOSpine thoracolumbar spine injury classification system. Spine 2013; 38: 2028-2037
  • 7 Genant HK, Wu CY, van Kuijk C. et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8: 1137-1148
  • 8 Genant HK, Li J, Wu CY. et al. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 2000; 3: 281-290
  • 9 Schnake K, Hahn P, Franck A. et al. Development of a classification system (OF-classification) and of a score for therapeutic decision making (OF-score) for osteoporotic thoracolumbar fractures. Eur Spine J 2013; 22: 2590
  • 10 Schnake K, Bouzakri N, Blattert T. et al. Validation of a classification system for osteoporotic thoracolumbar fractures (OF-classification). Eur Spine J 2014; 23: 2511
  • 11 Pfeifer M, Kohlwey L, Begerow B. et al. Effects of two newly developed spinal orthoses on trunk muscle strength, posture, and quality-of-life in women with postmenopausal osteoporosis: a randomized trial. Am J Phys Med Rehabil 2011; 90: 805-815
  • 12 Meccariello L, Muzii VF, Falzarano G. et al. Dynamic corset versus three-point brace in the treatment of osteoporotic compression fractures of the thoracic and lumbar spine: a prospective, comparative study. Aging Clin Exp Res 2017; 29: 443-449
  • 13 Li M, Law SW, Cheng J. et al. A comparison study on the efficacy of SpinoMed® and soft lumbar orthosis for osteoporotic vertebral fracture. Prosthet Orthot Int 2015; 39: 270-276
  • 14 Galibert P, Deramond H, Rosat P. et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie 1987; 33: 166-168
  • 15 Deramond H, Depriester C, Galibert P. et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 1998; 36: 533-546
  • 16 Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976) 2001; 26: 1511-1515
  • 17 Wilke HJ, Mehnert U, Claes L. et al. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine (Phila Pa 1976) 2006; 31: 2934-2941
  • 18 Kallmes DF, Comstock BA, Heagerty PJ. et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 2009; 361: 569-579
  • 19 Buchbinder R, Osborne RH, Ebeling PR. et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 2009; 361: 557-568
  • 20 Clark W, Bird P, Gonski P. et al. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2016; 388: 1408-1416
  • 21 Wardlaw D, Cummings SR, Van Meirhaeghe J. et al. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet 2009; 373: 1016-1024
  • 22 Zhao G, Liu X, Li F. Balloon kyphoplasty versus percutaneous vertebroplasty for treatment of osteoporotic vertebral compression fractures (OVCFs). Osteoporos Int 2016; 27: 1-12
  • 23 Bouza C, López-Cuadrado T, Almendro N. et al. Safety of balloon kyphoplasty in the treatment of osteoporotic vertebral compression fractures in Europe: a meta-analysis of randomized controlled trials. Eur Spine J 2014; 24: 715-723
  • 24 Hartensuer R, Gehweiler D, Schulze M. et al. Biomechanical evaluation of combined short segment fixation and augmentation of incomplete osteoporotic burst fractures. BMC Musculoskelet Disord 2013; 14: 360
  • 25 Riesenbeck O, Stump A, Czarnowski N. et al. Influence of kyphoplasty to postraumatic segmental instability. Eur Spine J 2016; 25: 3774
  • 26 Oh T, Scheer JK, Fakurnejad S. et al. Minimally invasive spinal surgery for the treatment of traumatic thoracolumbar burst fractures. J Clin Neurosci 2015; 22: 42-47
  • 27 Lee JH, Park JW, Shin YH. The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation. Bone Joint J 2012; 94-B: 93-97
  • 28 Ozawa T, Takahashi K, Yamagata M. et al. Insertional torque of the lumbar pedicle screw during surgery. J Orthop Sci 2005; 10: 133-136
  • 29 Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res 1992; (284) 34-46
  • 30 Hirano T, Hasegawa K, Washio T. et al. Fracture risk during pedicle screw insertion in osteoporotic spine. J Spinal Disord 1998; 11: 493-497
  • 31 Paik H, Kang DG, Lehman RA. et al. The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?. Spine J 2013; 13: 1617-1626
  • 32 Serhan H, Hammerberg K, OʼNeil M. et al. Intraoperative techniques to reduce the potential of set-screw loosening in long spinal constructs: a static and fatigue biomechanical investigation. J Spinal Disord 2010; 23: e31-e36
  • 33 Wang H, Li C, Liu T. et al. Biomechanical efficacy of monoaxial or polyaxial pedicle screw and additional screw insertion at the level of fracture, in lumbar burst fracture: An experimental study. Indian J Orthop 2012; 46: 395-401
  • 34 Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg 2002; 96: 309-312
  • 35 Sawakami K, Yamazaki A, Ishikawa S. et al. Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord 2012; 25: E28-E35
  • 36 Bullmann V, Liljenqvist UR, Rödl R. et al. [Pedicle screw augmentation from a biomechanical perspective]. Orthopade 2010; 39: 673-678
  • 37 Blattert TR, Glasmacher S, Riesner HJ. et al. Revision characteristics of cement-augmented, cannulated-fenestrated pedicle screws in the osteoporotic vertebral body: a biomechanical in vitro investigation. Technical note. J Neurosurg Spine 2009; 11: 23-27
  • 38 Mueller JU, Baldauf J, Marx S. et al. Cement leakage in pedicle screw augmentation: a prospective analysis of 98 patients and 474 augmented pedicle screws. J Neurosurg Spine 2016; 25: 103-109
  • 39 McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures. Spine 1994; 19: 1741-1744
  • 40 Oner FC, Verlaan JJ, Verbout AJ. et al. Cement augmentation techniques in traumatic thoracolumbar spine fractures. Spine 2006; 31: S89-S95
  • 41 Verlaan JJ, Dhert WJA, Verbout AJ. et al. Balloon vertebroplasty in combination with pedicle screw instrumentation. Spine 2005; 30: E73-E79
  • 42 Mermelstein LE, McLain RF, Yerby SA. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement – a biomechanical study. Spine 1998; 23: 664-670
  • 43 Verlaan JJ, Dhert WJA, Oner FC. Intervertebral disc viability after burst fractures of the thoracic and lumbar spine treated with pedicle screw fixation and direct end-plate restoration. Spine J 2013; 13: 217-221
  • 44 Khan NR, Clark AJ, Lee SL. et al. Surgical outcomes for minimally invasive vs. open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery 2015; 77: 847-874
  • 45 Smith H, Welsch M, Ugurlu H. et al. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs. computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 2016; 31: 532-537