Sportphysio 2017; 05(04): 153-161
DOI: 10.1055/s-0043-119006
Focus
Einführung
Georg Thieme Verlag KG Stuttgart · New York

Die Sehne im Sport

Hans-Peter Wiesinger
,
Alexander Kösters
Further Information

Publication History

Publication Date:
02 November 2017 (online)

Zusammenfassung

SEHNENADAPTATION UND DEREN STRUKTURELLE/FUNKTIONELLE BEDEUTUNG Sehnen sind essenziell für jede Bewegung – Bewegung ist jedoch auch essenziell für jede Sehne: Die Forschung der letzten Jahrzehnte offenbart die enge Beziehung zwischen mechanischen Stimuli einerseits sowie der Struktur und Funktion – beziehungsweise Verletzungsanfälligkeit – der Sehne andererseits. Besonders gut erforscht ist inzwischen die belastungsabhängige Anpassungsfähigkeit von Patellar- und Achillessehne an mechanische Belastungen.

 
  • Literatur

  • 1 Aaron BB, Gosline JM. Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers. Biopolymers 1981; 20: 1247-60
  • 2 Alexander RM. Factors of safety in structure of animals. Science Prog 1981; 67: 109-30
  • 3 Alexander RM. Tendon elasticity and muscle function. Comp Biochem Physiol A Mol Integr Physiol 2002; 133: 1001-11
  • 4 Alexander RM, Bennet-Clark HC. Storage of elastic strain energy in muscle and other tissues. Nature 1977; 265: 114-7
  • 5 Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol 2007; 210: 2743-53
  • 6 Arampatzis A, Karamanidis K, Morey-Klapsing G. et al. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J Biomech 2007; 40: 1946-52
  • 7 Arnoczky SP, Lavagnino M, Whallon JH. et al In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J Orthop Res 2002; 20: 29-35
  • 8 Bayer ML, Schjerling P, Herchenhan A. et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One 2014; 9 e86078
  • 9 Benjamin M, Kaiser E, Milz S. Structure-function relationships in tendons: A review. J Anat 2008; 212: 211-28
  • 10 Biewener AA, Roberts TJ. Muscle and tendon contribution to force, work, and elastic energy savings: A comparative perspective. Exerc Sport Sci Rev 2000; 28: 99-107
  • 11 Birch HL. Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Pathol 2007; 88: 241-8
  • 12 Bobbert MF. Dependence of human squat jump performance on the series elastic compliance of the triceps surae, a simulation study. J Exp Biol 2001; 204: 533-42
  • 13 Bojsen-Moller J, Hansen P, Aagaard P. et al. Measuring mechanical properties of the vastus lateralis tendon-aponeurosis complex in vivo by ultrasound imaging. Scand J Med Sci Sports 2003; 13: 250-65
  • 14 Boushel R, Langberg H, Green S. et al. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J Physiol 2000; 524: 305-13
  • 15 Carroll CC. Analgesic drugs alter connective tissue remodeling and mechanical properties. Exerc Sport Sci Rev 2016; 44: 29-36
  • 16 Carroll CC, Dickinson JM, LeMoine JK. et al. Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults. J Appl Physiol 2011; 111: 508-15
  • 17 Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol 1977; 268: 467-81
  • 18 Connizzo BK, Yannascoli SM, Soslowsky LJ. Structure-function relationships of postnatal tendon development: A parallel to healing. Matrix Biol 2013; 32: 106-16
  • 19 Couppé C, Kongsgaard M, Aagaard P. et al. Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol 2008; 105: 805-10
  • 20 Davis HG. Conservative surgery. Appleton; New York: 1867
  • 21 De Boer MD, Maganaris CN, Seynnes OR. et al. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol 2007; 583: 1079-91
  • 22 Elliot DH. Structure and function of mammalian tendon. Biol Rev 1965; 40: 392-421
  • 23 Fallon J, Blevins FT, Vogel K. et al. Functional morphology of the supraspinatus tendon. J Orthop Res 2002; 20: 920-6
  • 24 Franchi M, Quaranta M, Macciocca M. et al. Structure relates to elastic recoil and functional role in quadriceps tendon and patellar ligament. Micron 2009; 40: 370-7
  • 25 Franchi M, Torricelli P, Giavaresi G. et al. Role of moderate exercising on Achilles tendon collagen crimping patterns and proteoglycans. Connect Tissue Res 2013; 54: 267-74
  • 26 Fukashiro S, Itoh M, Ichinose Y. et al. Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 1995; 71: 555-7
  • 27 Fukunaga T, Ito M, Ichinose Y. et al. Tendinous movement of a human muscle during voluntary contractions determined by real-time ultrasonography. J Appl Physiol 1996; 81: 1430-3
  • 28 Gosline J, Lillie M, Carrington E. et al. Elastic proteins: Biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 2002; 357: 121-32
  • 29 Griffiths H. The mechanics of the medial gastrocnemius muscle in the freely hopping wallaby (Thylogale Billardierii). J Exp Biol 1989; 147: 439-56
  • 30 Heinemeier KM, Schjerling P, Heinemeier J. et al. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. The FASEB Journal 2013; 27: 2074-9
  • 31 Herchenhan A, Uhlenbrock F, Eliasson P. et al. Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells. J Biol Chem 2015; 290: 16440-50
  • 32 Hof AL, Geelen BA, Van den Berg JW. Calf muscle moment, work and efficiency in level walking; role of series elasticitiy. J Biomech 1983; 16: 523-37
  • 33 Jones GC, Riley GP. ADAMTS proteinases: A multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 2005; 7: 160-9
  • 34 Kastelic J, Galeski A, Baer E. The multicomposite structure of tendon. Connect Tissue Res 1978; 6: 11-23
  • 35 Ker RF, Alexander RM, Bennet-Clark HC. Why are mammalian tendons so thick?. J Zool Lond 1988; 216: 309-24
  • 36 Kinguasa R, Hodgson JA, Edgerton VR. et al. Reduction in tendon elasticity from unloading is unrelated to its hypertrophy. J Appl Physiol 2010; 109: 870-7
  • 37 Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004; 84: 649-98
  • 38 Kjaer M, Bayer ML, Eliasson P. et al. What is the impact of inflammation on the critical interplay between mechanical signaling and biochemical changes in tendon matrix?. J Appl Physiol 2013; 115: 879-83
  • 39 Komi PV, Fukashiro S, Järvinen M. Biomechanical loading of the Achilles tendon during normal locomotion. Clin Sports Med 1992; 11: 521-31
  • 40 Kongsgaard M, Reitelseder S, Pedersen TG. et al. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol 2007; 191: 111-21
  • 41 Konow N, Azizi E, Roberts TJ. Muscle power attenuation by tendon during energy dissipation. Proc Biol Sci 2012; 279: 1108-13
  • 42 Korol RM, Finlay HM, Josseau MJ. et al. Fluorescence spectroscopy and birefringence of molecular changes in maturing rat tail tendon. J. Biomed. Opt 2007; 12 024011
  • 43 Kubo K, Akima H, Kouzaki M. et al. Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol 2000; 83: 463-8
  • 44 Kubo K, Ikebukuro T. Blood circulation of patellar and Achilles tendons during contractions and heating. Med Sci Sports Exerc 2012; 44: 2111-7
  • 45 Kubo K, Ikebukuro T, Yaeshima K. et al. Effects of static and dynamic training on the stiffness and blood volume of tendon in vivo. J Appl Physiol 2009; 106: 412-7
  • 46 Kubo K, Ikebukuro T, Yata H. et al. Effect of training on muscle and tendon in knee extensors and plantar flexors in vivo. J Appl Biomech 2010; 26: 316-23
  • 47 Kubo K, Ikebukuro T, Yata H. et al. Time course of changes in muscle and tendon properties during strength training and detraining. J Strength Cond Res 2010; 24: 322-31
  • 48 Kubo K, Kanehisa H, Ito M. et al. Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol 2001; 91: 26-32
  • 49 Kubo K, Kawakami Y, Kanehisa H. et al. Measurement of viscoelastic properties of tendon structures in vivo. Scand J Med Sci Sports 2002; 12: 5-8
  • 50 Kubo K, Komuro T, Ishiguro N. et al. Effects of low-load resistance training with vascular occlusion on the mechanical properties of muscle and tendon. J Appl Biomech 2006; 22: 112-9
  • 51 Langberg H, Bülow J, Kjaer M. Blood flow in the peritendinous space of the human Achilles tendon during exercise. Acta Physiol Scand 1998; 163: 149-53
  • 52 Lichtwark GA, Wilson AM. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol 2005; 208: 4715-25
  • 53 Lichtwark GA, Wilson AM. Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion?. J Biomech 2007; 40: 1768-75
  • 54 Maffulli N, Kenward MG, Testa V. et al. Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J Sports Med 2003; 13: 11-5
  • 55 Maganaris CN. Imaging-based estimates of moment arm length in intact human muscle-tendons. Eur J Appl Physiol 2004; 91: 130-9
  • 56 Malliaras P, Kamal B, Nowell A. et al. Patellar tendon adaptation in relation to load-intensity and contraction type. J Biomech 2013; 46: 1893-9
  • 57 Maquirriain J. Achilles tendon rupture: Avoiding tendon lengthening during surgical repair and rehabilitation. Yale J Biol Med 2011; 84: 289-300
  • 58 McMahon GE, Morse CI, Burden A. et al. The manipulation of strain, when stress is controlled, modulates in vivo tendon mechanical properties but not systemic TGF-beta1 levels. Physiol Rep 2013; 1 e00091
  • 59 Michna H, Hartmann G. Adaptation of tendon collagen to exercise. Int Orthop 1989; 13: 161-5
  • 60 Millar NL, Murrell GA, McInnes IB. Inflammatory mechanisms in tendinopathy – towards translation. Nat Rev Rheumatol 2017; 13: 110-22
  • 61 Millesi H, Reihsner R, Hamilton G. et al. Biomechanical properties of normal tendons, normal palmar aponeuroses, and tissues from patients with Dupuytren’s disease subjected to elastase and chondroitinase treatment. Clin Biomech 1995; 10: 29-35
  • 62 Nakagawa Y, Hayashi K, Yamamoto N. Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physio 1996; 73: 7-10
  • 63 Petersen SG, Miller BF, Hansen M. et al. Exercise and NSAIDs: Effect on muscle protein synthesis in patients with knee osteoarthritis. Med Sci Sports Exerc 2011; 43: 425-31
  • 64 Rees SG, Flannery CR, Little CB. et al. Catabolism of aggrecan, decorin and biglycan in tendon. Biomech J 2000; 350: 181-8
  • 65 Reeves ND, Maganaris CN, Ferretti G. et al. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J Appl Physiol 2005; 98: 2278-86
  • 66 Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 2003; 548: 971-81
  • 67 Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 2003; 28: 74-81
  • 68 Riley G, Harrall RL, Constant CR. et al. Glycosaminoglycans of human rotator cuff tendons: Changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 1994; 53: 367-76
  • 69 Roberts TJ. The integrated function of muscle and tendon during locomotion. Comp Biochem Physiol A Mol Integr Physiol 2002; 133: 1087-99
  • 70 Roberts TJ, Azizi E. The series-elastic shock absorber: tendons attenuate muscle power during eccentric actions. J Appl Physiol 2010; 109: 396-404
  • 71 Roberts TJ, Marsh RL, Weyand PG. et al. Muscular force in running turkeys the economy of minimizing work. Science 1997; 275: 1113-5
  • 72 Roberts TJ, Scales JA. Mechanical power output during running accelerations in wild turkeys. J Exp Biol 2002; 205: 1485-94
  • 73 Screen HRC, Bader DL, Lee DA. et al. Local strain measurement within tendon. Strain 2004; 40: 157-63
  • 74 Seynnes OR, Bojsen-Moller J, Albracht K. et al. Ultrasound-based testing of tendon mechanical properties: A critical evaluation. J Appl Physiol 2015; 118: 133-41
  • 75 Seynnes OR, Erskine RM, Maganaris CN. et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol 2009; 107: 523-30
  • 76 Seynnes OR, Kamandulis S, Kairaitis R. et al. Effect of androgenic-anabolic steroids and heavy strength training on patellar tendon morphological and mechanical properties. J Appl Physiol 2013; 115: 84-9
  • 77 Shin D, Finni T, Ahn S. et al. Effect of chronic unloading and rehabilitation on human Achilles tendon properties: A velocity-encoded phase-contrast MRI study. J Appl Physiol 2008; 105: 1179-86
  • 78 Standley RA, Harber PA, Lee JD. et al. Influence of aerobic cycle exercise training on patellar tendon cross-sectional area in older women. Scand J Med Sci Sports 2013; 23: 367-73
  • 79 Stenroth L, Sillanpaa E, McPhee JS. et al. Plantarflexor muscle-tendon properties are associated with mobility in healthy older adults. J Gerontol A Biol Sci Med Sci 2015; 70: 996-1002
  • 80 Thorpe CT, Riley GP, Birch HL. et al. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading. J R Soc Interface 2014; 11 20131058
  • 81 Thorpe CT, Spiesz EM, Chaudhry S. et al. Science in brief: Recent advances into understanding tendon function and injury risk. Equine Vet J 2015; 47: 137-40
  • 82 Vesentini S, Redaelli A, Montevecchi FM. Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. J Biomech 2005; 38: 433-43
  • 83 Wang XT, Ker RF, Alexander RM. Fatigue rupture of wallaby tail tendons. J Exp Biol 1995; 198: 847-52
  • 84 Westh E, Kongsgaard M, Bojsen-Moller J. et al. Effect of habitual exercise on the structural and mechanical properties of human tendon, in vivo, in men and women. Scand J Med Sci Sports 2008; 18: 23-30
  • 85 Wiesinger HP, Kösters A, Müller E. et al. Effects of increased loading on in vivo tendon properties: A systematic review. Med Sci Sports Exerc 2015; 47: 1885-95
  • 86 Wiesinger HP, Rieder F, Kösters A. et al. Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity?. PloS One 2016; 11 e0158441
  • 87 Wiesinger HP, Rieder F, Kösters A. et al. Sport-specific capacity to use elastic energy in the patellar and Achilles tendon of elite athletes. Front Physiol 2017; 13: 132
  • 88 Wilson AM, Watson JC, Lichtwark G. A catapult action for rapid limb protraction. Nature 2003; 421: 35-6
  • 89 Woo SLY. Mechanical properties of ligaments and tendon. II The relationships of immobilization and exercise on tissue remodeling. Biorheology 1982; 19: 397-408
  • 90 Yoon JH, Halper J. Tendon proteoglycans: Biochemistry and function. J Musculoskelatal Neuronal Interact 2005; 5: 22-34