Frauenheilkunde up2date, Table of Contents Frauenheilkunde up2date 2017; 11(05): 479-498DOI: 10.1055/s-0043-123627 Interdisziplinäre Themen Georg Thieme Verlag KG Stuttgart · New YorkEpigenetik: Einfluss auf die fetale Entwicklung Authors Bettina Brune Thomas Brune Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) „Der Mensch ist mehr als die Summe seiner Gene“. Wurde dieser Satz im Jahr 2002 kurz vor Abschluss des Humanen Genomprojekts (HGP) noch unter ethischen und moralphilosophischen Gesichtspunkten diskutiert, wurde danach schnell klar, dass er auch eine tiefergreifende wissenschaftliche Bedeutung für die gesamte Biologie hat als vorher angenommen. Full Text References Literatur 1 Waddington C. The Epigenotype. Int J of Epidemiol 2012; 41: 10-13 2 FAO/WHO. Expert Consultation on human vitamin and mineral requirements: Folate and folic acid. Rom: FAO; 2001: 53-62 3 Gordon L, Joo J, Powell J. et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 2012; 22: 1395-1406 4 Matsuda M, Yasutomi M. Inhibition of cephalic neural tube closure by 5-azacytidine in neurulating rat embryos in vitro. Anat Embryol 1992; 185: 217-223 5 Hackett J, Surani M. DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci 2013; 368(1609): 20110328 6 Gicquel C, Gaston V, Mandelbaum J. et al. In-vitro-fertilization may increase the risk of Beckwith-Wiedemann Syndrome related to the abnormal imprinting of the KCNQ10 T gene. Am J Hum Genet 2003; 72: 1338-1341 7 Zhao J, Goldberg J, Bremner J. et al. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 2012; 61: 542-546 8 Radtke K, Ruf M, Gunter H. et al. Transgenerational impact of intimate partner violence on methylation in the promotor of the glucocorticoid receptor. Transl Psychiatry 2011; 1: e21 9 Crudo A, Petropoulos S, Moisiadis V. et al. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 2012; 153: 3269-3283 10 Markunas C, Xu Z, Harlid S. et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2014; 122: 1147-1153 11 Bauer T, Trump S, Ishaque N. et al. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 2016; 12: 861 12 Herberth G, Bauer M, Gasch M. et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2014; 133: 543-550 13 Yeo M, Berglund K, Hanna M. et al. Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promotor. Proc Natl Acad Sci USA 2013; 110: 4315-4320 14 Hales C, Barker D. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologica 1992; 35: 595-601 15 Tobi E, Lumey L, Talens R. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009; 18: 4046-4053 16 Painter R, Osmond C, Gluckman P. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008; 115: 1243-1249 17 Plagemann A, Harder T, Brunn M. et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587: 4963-4976 18 Guénard F, Deshaies Y, Cianflone K. et al. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 2013; 110: 11439-11444 19 Bilbo S, Tsang V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J 2010; 24: 2104-2115 20 Stirm L, Salih J, Häring H. et al. Epigenetische Veränderungen im Gestationsdiabetes. Diabetologie und Stoffwechsel 2015; 10: P191 21 Lyko F, Foret S, Kucharski R. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 2010; 8: e1000506 22 Hollingsworth J, Maruoka S, Boon K. et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 2008; 118: 3462-3469 23 Waterland R, Jirtle R. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003; 23: 5293-5300 24 Dolinoy D. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 2008; 66: 7-11 25 Junaid M, Kuizon S, Cardona J. et al. Folic acid supplementation dysregulates gene expression in lymphoblastoid cellsimplications in nutrition. Biochem Biophys Res Commun 2011; 412: 688-692 26 Cho C, Sánchez-Hernández D, Reza-López S. et al. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring. Epigenetics 2013; 8: 710-719 27 Brenseke B, Prater M, Bahamonde J. et al. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome. J Pregnancy 2013; 368-461 28 Richardson S, Daniels C, Gillman M. et al. Society: Donʼt blame the mothers. Nature 2014; 512: 131-132 29 Lambrot R, Xu C, Saint-Phar S. et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun 2013; 4: 28-89 30 Rodgers A, Morgan C, Bronson S. et al. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress regulation. J Neurosci 2013; 33: 9003-9012 31 Mychasiuk R, Harker A, Ilnytskyy S. et al. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 2013; 241: 100-105