Semin Musculoskelet Radiol 2023; 27(01): 030-044
DOI: 10.1055/s-0043-1761495
Review Article

Normal Bone Marrow and Non-neoplastic Systemic Hematopoietic Disorders in the Adult

Philippa Anne Tyler
1   Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, United Kingdom
,
Ramanan Rajakulasingam
1   Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, United Kingdom
,
Asif Saifuddin
1   Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, United Kingdom
› Author Affiliations

Abstract

This article provides an overview of the imaging appearances of normal adult bone marrow with an emphasis on magnetic resonance imaging. We also review the cellular processes and imaging features of normal developmental yellow-to-red marrow conversion and compensatory physiologic or pathologic red marrow reconversion. Key imaging features that differentiate between normal adult marrow, normal variants, non-neoplastic hematopoietic disorders, and malignant marrow disease are discussed, as well as posttreatment changes.



Publication History

Article published online:
03 March 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Caranci F, Tedeschi E, Ugga L. et al. Magnetic resonance imaging correlates of benign and malignant alterations of the spinal bone marrow. Acta Biomed 2018; 89 (1-S): 18-33
  • 2 Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR imaging of pediatric bone marrow. Radiographics 2016; 36 (06) 1911-1930
  • 3 Ricci C, Cova M, Kang YS. et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990; 177 (01) 83-88
  • 4 Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal?. Radiology 2009; 250 (01) 28-38
  • 5 Andrews CL. From the RSNA Refresher Courses. Radiological Society of North America. Evaluation of the marrow space in the adult hip. Radiographics 2000; 20 (Spec No, suppl_1): S27-S42
  • 6 Steiner RM, Mitchell DG, Rao VM, Schweitzer ME. Magnetic resonance imaging of diffuse bone marrow disease. Radiol Clin North Am 1993; 31 (02) 383-409
  • 7 Price EA, Mehra R, Holmes TH, Schrier SL. Anemia in older persons: etiology and evaluation. Blood Cells Mol Dis 2011; 46 (02) 159-165
  • 8 Dooms GC, Fisher MR, Hricak H, Richardson M, Crooks LE, Genant HK. Bone marrow imaging: magnetic resonance studies related to age and sex. Radiology 1985; 155 (02) 429-432
  • 9 Martinoli C, Bacigalupo L, Forni GL, Balocco M, Garlaschi G, Tagliafico A. Musculoskeletal manifestations of chronic anemias. Semin Musculoskelet Radiol 2011; 15 (03) 269-280
  • 10 Poulton TB, Murphy WD, Duerk JL, Chapek CC, Feiglin DH. Bone marrow reconversion in adults who are smokers: MR imaging findings. AJR Am J Roentgenol 1993; 161 (06) 1217-1221
  • 11 Arslan G, Ozmen E, Soyturk M. MRI of residual red bone marrow in the distal femur of healthy subjects. Pol J Radiol 2015; 80: 300-304
  • 12 Gu L, Madewell JE, Aslam R, Mujtaba B. The effects of granulocyte colony-stimulating factor on MR images of bone marrow. Skeletal Radiol 2019; 48 (02) 209-218
  • 13 Hartman RP, Sundaram M, Okuno SH, Sim FH. Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol 2004; 183 (03) 645-653
  • 14 Fletcher BD, Wall JE, Hanna SL. Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 1993; 189 (03) 745-751
  • 15 Rajakulasingam R, Saifuddin A. Focal nodular marrow hyperplasia: Imaging features of 53 cases. Br J Radiol 2020; 93 (1112): 20200206
  • 16 Vande Berg BC, Lecouvet FE, Galant C, Maldague BE, Malghem J. Normal variants and frequent marrow alterations that simulate bone marrow lesions at MR imaging. Radiol Clin North Am 2005; 43 (04) 761-770 , ix
  • 17 Carroll KW, Feller JF, Tirman PFJ. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging 1997; 7 (02) 394-398
  • 18 Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull's-eyes and halos: useful MR discriminators of osseous metastases. Radiology 1993; 188 (01) 249-252
  • 19 Saifuddin A, Shafiq H, Malhotra K, Santiago R, Pressney I. Comparison of in-phase and opposed-phase T1W gradient echo and T2W fast spin echo Dixon chemical shift imaging for the assessment of non-neoplastic, benign neoplastic and malignant marrow lesions. Skeletal Radiol 2021; 50 (06) 1209-1218
  • 20 Tyler PA, Madani G, Chaudhuri R, Wilson LF, Dick EA. The radiological appearances of thalassaemia. Clin Radiol 2006; 61 (01) 40-52
  • 21 Wonke. Bone disease in β-thalassaemia major: annotation. Br J Haematol 1998; 103 (04) 897-901
  • 22 Lawson JP, Ablow RC, Pearson HA. The ribs in thalassemia. II. The pathogenesis of the changes. Radiology 1981; 140 (03) 673-679
  • 23 Naselli A, Vignolo M, Di Battista E. et al. Long-term follow-up of skeletal dysplasia in thalassaemia major. J Pediatr Endocrinol Metab 1998; 11 (Suppl. 03) 817-825
  • 24 Chan Y, Li C, Chu WC, Pang L, Cheng JC, Chik KW. Deferoxamine-induced bone dysplasia in the distal femur and patella of pediatric patients and young adults: MR imaging appearance. AJR Am J Roentgenol 2000; 175 (06) 1561-1566
  • 25 Gaudio A, Morabito N, Catalano A, Rapisarda R, Xourafa A, Lasco A. Pathogenesis of thalassemia major-associated osteoporosis: a review with insights from clinical experience. J Clin Res Pediatr Endocrinol 2019; 11 (02) 110-117
  • 26 Chan Y-L, Pang L-M, Chik K-W, Cheng JC, Li C-K. Patterns of bone diseases in transfusion-dependent homozygous thalassaemia major: predominance of osteoporosis and desferrioxamine-induced bone dysplasia. Pediatr Radiol 2002; 32 (07) 492-497
  • 27 Korovessis PG, Papanastasiou D, Tiniakou M, Beratis NG. Prevalence of scoliosis in beta-thalassemia. J Spinal Disord 1996; 9 (02) 170-173
  • 28 Orzincolo C, Castaldi G, Scutellari PN, Franceschini F. The “lamellated” skull in beta-thalassaemia. Skeletal Radiol 1989; 18 (05) 373-376
  • 29 Sohawon D, Lau KK, Lau T, Bowden DK. Extra-medullary haematopoiesis: a pictorial review of its typical and atypical locations. J Med Imaging Radiat Oncol 2012; 56 (05) 538-544
  • 30 Murakami T, Dixon AC, Ho RC, Nakamura JM. Asymptomatic intrathoracic extramedullary hematopoiesis: a report of three cases. Hawaii Med J 1989; 48 (10) 430-432 ;, 434–436
  • 31 Roberts AS, Shetty AS, Mellnick VM, Pickhardt PJ, Bhalla S, Menias CO. Extramedullary haematopoiesis: radiological imaging features. Clin Radiol 2016; 71 (09) 807-814
  • 32 Haidar R, Mhaidli H, Musallam KM, Taher AT. The spine in β-thalassemia syndromes. Spine 2012; 37 (04) 334-339
  • 33 Oon SF, Singh D, Tan TH. et al. Primary myelofibrosis: spectrum of imaging features and disease-related complications. Insights Imaging 2019; 10 (01) 71
  • 34 Keraliya AR, Krajewski KM, Jagannathan JP. et al. Multimodality imaging of osseous involvement in haematological malignancies. Br J Radiol 2016; 89 (1059): 20150980
  • 35 Levin TL, Sheth SS, Ruzal-Shapiro C, Abramson S, Piomelli S, Berdon WE. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation. Pediatr Radiol 1995; 25 (08) 607-613
  • 36 Taher AT, Saliba AN. Iron overload in thalassemia: different organs at different rates. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 265-271
  • 37 Kellenberger CJ, Schmugge M, Saurenmann T. et al. Radiographic and MRI features of deferiprone-related arthropathy of the knees in patients with beta-thalassemia. AJR Am J Roentgenol 2004; 183 (04) 989-994
  • 38 Kosaraju V, Harwani A, Partovi S. et al. Imaging of musculoskeletal manifestations in sickle cell disease patients. Br J Radiol 2017; 90 (1073): 20160130
  • 39 Ojodu J, Hulihan MM, Pope SN, Grant AM. Centers for Disease Control and Prevention (CDC). Incidence of sickle cell trait—United States, 2010. MMWR Morb Mortal Wkly Rep 2014; 63 (49) 1155-1158
  • 40 Lubeck D, Agodoa I, Bhakta N. et al. Estimated life expectancy and income of patients with sickle cell disease compared with those without sickle cell disease. JAMA Netw Open 2019; 2 (11) e1915374
  • 41 Umans H, Haramati N, Flusser G. The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging 2000; 18 (03) 255-262
  • 42 Ejindu VC, Hine AL, Mashayekhi M, Shorvon PJ, Misra RR. Musculoskeletal manifestations of sickle cell disease. Radiographics 2007; 27 (04) 1005-1021
  • 43 Ware HE, Brooks AP, Toye R, Berney SI. Sickle cell disease and silent avascular necrosis of the hip. J Bone Joint Surg Br 1991; 73 (06) 947-949
  • 44 Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics 2001; 21 (04) 971-994
  • 45 Marlow TJ, Brunson CY, Jackson S, Schabel SI. “Tower vertebra”: a new observation in sickle cell disease. Skeletal Radiol 1998; 27 (04) 195-198
  • 46 Malizos KN, Siafakas MS, Fotiadis DI, Karachalios TS, Soucacos PN. An MRI-based semiautomated volumetric quantification of hip osteonecrosis. Skeletal Radiol 2001; 30 (12) 686-693
  • 47 Babhulkar SS, Pande KC, Babhulkar SS. Clinical review of osteonecrosis of humeral head in sickle cell haemoglobinopathy (study of 258 shoulders). J Shoulder Elbow Surg 1996; 5 (02) S63
  • 48 Collett-Solberg PF, Ware RE, O'Hara SM. Asymmetrical closure of epiphyses in a patient with sickle cell anemia. J Pediatr Endocrinol Metab 2002; 15 (08) 1207-1212
  • 49 Bahebeck J, Atangana R, Techa A, Monny-Lobe M, Sosso M, Hoffmeyer P. Relative rates and features of musculoskeletal complications in adult sicklers. Acta Orthop Belg 2004; 70 (02) 107-111
  • 50 Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med 2009; 361 (19) 1872-1885
  • 51 Kwiatkowska-Pamuła A, Ziółko E, Muc-Wierzgoń M, Nowakowska-Zajdel E, Podwińska E, Adamczyk T. Usefulness of spinal magnetic resonance imaging in patients with myelodysplastic syndromes. Pol J Radiol 2013; 78 (01) 42-49
  • 52 Barrett J. Myelodysplastic syndrome and aplastic anemia—diagnostic and conceptual uncertainties. Leuk Res 2000; 24 (07) 595-596
  • 53 Yang X, Bai Y, Guo H. et al. Evaluating and monitoring bone marrow hypoplasia in adults with aplastic anemia via high-resolution iliac magnetic resonance imaging in the current era. Medicine (Baltimore) 2019; 98 (49) e18214
  • 54 Leone A, Criscuolo M, Gullì C, Petrosino A, Carlo Bianco N, Colosimo C. Systemic mastocytosis revisited with an emphasis on skeletal manifestations. Radiol Med (Torino) 2021; 126 (04) 585-598
  • 55 Riffel P, Jawhar M, Gawlik K. et al. Magnetic resonance imaging reveals distinct bone marrow patterns in indolent and advanced systemic mastocytosis. Ann Hematol 2019; 98 (12) 2693-2701
  • 56 Elsaiey A, Mahmoud HS, Jensen CT. et al. Mastocytosis—a review of disease spectrum with imaging correlation. Cancers (Basel) 2021; 13 (20) 5102
  • 57 Ng CY, Kuek DKC, Suresh P. MR findings in the bone marrow of a patient with anorexia nervosa. Indian J Musculoskelet Radiol. 2020; 2: 136-139
  • 58 Vande Berg BC, Malghem J, Devuyst O, Maldague BE, Lambert MJ. Anorexia nervosa: correlation between MR appearance of bone marrow and severity of disease. Radiology 1994; 193 (03) 859-864
  • 59 Mondal M, Gaba S. “Flip-flop phenomenon”—magnetic resonance imaging pitfall: a case report. J Radiol Case Rep 2021; 15 (06) 19-25