Pneumologie 2025; 79(S 01): S107
DOI: 10.1055/s-0045-1804778
Abstracts
D2 – Grundlagen- und translationale Lungenforschung

Neural Network-Assisted Humanisation of COVID-19 Hamster Transcriptomic Data Reveals Matching Severity States in Human Disease

P Pennitz
1   Charité-Universitätsmedizin Berlin; Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin M.D.A. Schlafmedizin
,
V Friedrich
2   University of Leipzig; Institute for Medical Informatics, Statistics, and Epidemiology
,
E Wyler
3   Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Institute for Medical Systems Biology
,
J Adler
4   Freie Universität Berlin; Institut für Virologie
,
D Postmus
5   Charité – Universitätsmedizin Berlin; Institute of Virology; Institute of Virology
,
K Mueller
2   University of Leipzig; Institute for Medical Informatics, Statistics, and Epidemiology
,
L Teixeira Alves
3   Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Institute for Medical Systems Biology
,
J Kazmierski
6   Charité – Universitätsmedizin Berlin; Institute of Virology
,
F Pott
6   Charité – Universitätsmedizin Berlin; Institute of Virology
,
D Vladimirova
4   Freie Universität Berlin; Institut für Virologie
,
T Hoefler
4   Freie Universität Berlin; Institut für Virologie
,
C Gökeri
7   Charité – Universitätsmedizin Berlin; Department of Infectious Diseases, Respiratory Medicine and Critical Care
,
M Landthaler
3   Max Delbrück Center for Molecular Medicine in the Helmholtz Association; Berlin Institute for Medical Systems Biology
,
C Goffinet
6   Charité – Universitätsmedizin Berlin; Institute of Virology
,
A Saliba
8   University of Würzburg; Molecular Infection Biology
,
M Scholz
2   University of Leipzig; Institute for Medical Informatics, Statistics, and Epidemiology
,
J Trimpert
4   Freie Universität Berlin; Institut für Virologie
,
M Witzenrath
1   Charité-Universitätsmedizin Berlin; Klinik für Pneumologie, Beatmungsmedizin und Intensivmedizin M.D.A. Schlafmedizin
,
H Kirsten
9   Universität Leipzig; Institute for Medical Informatics
,
G Nouailles
10   Division of Pulmonary Inflammation, Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Infectious Diseases, Respiratory Medicine and Critical Care
› Author Affiliations
 
 

    The recent coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for appropriate models to evaluate therapeutic options applicable in a clinical setting. Though animal models are particularly valuable for studying host-pathogen interactions, approaches enabling comprehensive matching of experimental data to humans are still scarce. High throughput approaches such as single-cell transcriptomics (scRNAseq) have the ability to dissect molecular and cellular changes arising during inflammation, however computational methodologies robustly linking and evaluating interspecies changes in model organisms remains lacking. Here, we introduce a neural network using variational autoencoders capable of mapping temporal disease states of two hamster models – presenting moderate (Syrian hamster) or severe (Roborovski hamster) disease courses upon infection – to human COVID-19 severity ranks. Quantification of individual cell similarities confirmed that the transcriptional state of most Syrian hamster cell types best matched that of patients with moderate disease progression. Roborovski hamsters, which develop fatal outcomes upon SARS-CoV-2 infection, shared the highest similarities in neutrophils with that of severe COVID-19 patients. Transcriptome-wide analysis and candidate gene expression revealed similarities between hamster and human immune responses, particularly involving monocytes and neutrophils. Disease-related pathways across species highlighted interferon responses and inhibition of viral replication. Our structured neural network-supported workflow can be applied to other diseases, enhancing the identification of animal models with shared pathomechanisms.


    Publication History

    Article published online:
    18 March 2025

    © 2025. Thieme. All rights reserved.

    Georg Thieme Verlag KG
    Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany