Subscribe to RSS
DOI: 10.1055/s-0045-1812113
Pediatric Sports Imaging: Challenges of the Immature Musculoskeletal System
Authors
Abstract
Injury patterns in children differ from those in adults because of the physiology of the immature skeleton. A tailored imaging approach and in-depth knowledge of the physiology and pathology of the immature musculoskeletal system are essential for diagnosis, guiding the clinician to the right treatment plan and preventing long-term complications. This review provides a comprehensive overview of pediatric sports injuries, structured by tissue type and anatomical region. We pay special attention to the physiology of the immature musculoskeletal system, epidemiology of pediatric sport injuries, advanced imaging techniques, differentiation between normal developmental variants and pathology, and recognition of conditions that may mimic sports injuries. By integrating anatomical insight with clinical relevance, this review offers a modern multidisciplinary guide to the challenges of pediatric sports imaging.
Publication History
Received: 01 September 2025
Article published online:
04 February 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Haraldsdottir K, Watson AM. Psychosocial impacts of sports-related injuries in adolescent athletes. Curr Sports Med Rep 2021; 20 (02) 104-108
- 2 Snyder AR, Martinez JC, Bay RC, Parsons JT, Sauers EL, Valovich McLeod TC. Health-related quality of life differs between adolescent athletes and adolescent nonathletes. J Sport Rehabil 2010; 19 (03) 237-248
- 3 Bell DR, Post EG, Biese K, Bay C, Valovich McLeod T. Sport specialization and risk of overuse injuries: a systematic review with meta-analysis. Pediatrics 2018; 142 (03) e20180657
- 4 Stracciolini A, Casciano R, Levey Friedman H, Meehan III WP, Micheli LJ. Pediatric sports injuries: an age comparison of children versus adolescents. Am J Sports Med 2013; 41 (08) 1922-1929
- 5 Augusto ACL, Goes PCK, Flores DV. et al. Imaging review of normal and abnormal skeletal maturation. Radiographics 2022; 42 (03) 861-879
- 6 Bixby SD. Pitfalls in pediatric trauma and microtrauma. Magn Reson Imaging Clin N Am 2019; 27 (04) 721-735
- 7 Aydıngöz Ü, Yıldız AE, Ergen FB. Zero echo time musculoskeletal MRI: technique, optimization, applications, and pitfalls. Radiographics 2022; 42 (05) 1398-1414
- 8 Mourad C, Gallego Manzano L, Viry A. et al. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53 (09) 1889-1902
- 9 Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40 (01) 46-62
- 10 Caine D, Maffulli N, Meyers R, Schöffl V, Nguyen J. Inconsistencies and imprecision in the nomenclature used to describe primary periphyseal stress injuries: towards a better understanding. Sports Med 2022; 52 (04) 685-707
- 11 Nguyen JC, Caine D. The immature pediatric appendicular skeleton. Semin Musculoskelet Radiol 2024; 28 (04) 361-374
- 12 Brighton CT. The growth plate. Orthop Clin North Am 1984; 15 (04) 571-595
- 13 Nguyen JC, Markhardt BK, Merrow AC, Dwek JR. Imaging of pediatric growth plate disturbances. Radiographics 2017; 37 (06) 1791-1812
- 14 Micheli LJ, Fehlandt Jr AF. Overuse injuries to tendons and apophyses in children and adolescents. Clin Sports Med 1992; 11 (04) 713-726
- 15 Frost HM, Schönau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 2000; 13 (06) 571-590
- 16 Xu L, Nicholson P, Wang Q, Alén M, Cheng S. Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res 2009; 24 (10) 1693-1698
- 17 Perron AD, Miller MD, Brady WJ. Orthopedic pitfalls in the ED: pediatric growth plate injuries. Am J Emerg Med 2002; 20 (01) 50-54
- 18 Arnaiz J, Piedra T, de Lucas EM. et al. Imaging findings of lower limb apophysitis. AJR Am J Roentgenol 2011; 196 (03) W316-W325
- 19 Cerezal A, Roriz D, Canga A, Cerezal L. Imaging of sports injuries in adolescents. Pediatr Radiol 2025; 55 (04) 644-659
- 20 Theisen D, Malisoux L, Seil R, Urhausen A. Injuries in youth sports: epidemiology, risk factors and prevention. Dtsch Z Sportmed 2014; 65 (09) 248-252
- 21 Stracciolini A, Casciano R, Levey Friedman H, Stein CJ, Meehan III WP, Micheli LJ. Pediatric sports injuries: a comparison of males versus females. Am J Sports Med 2014; 42 (04) 965-972
- 22 Chaudhari AMW, Lindenfeld TN, Andriacchi TP. et al. Knee and hip loading patterns at different phases in the menstrual cycle: implications for the gender difference in anterior cruciate ligament injury rates. Am J Sports Med 2007; 35 (05) 793-800
- 23 Bezuglov E, Ahmetov II, Lazarev A. et al. The relationship of testosterone levels with sprint performance in young professional track and field athletes. Physiol Behav 2023; 271: 114344
- 24 Saito M, Kenmoku T, Kameyama K. et al. Relationship between tightness of the hip joint and elbow pain in adolescent baseball players. Orthop J Sports Med 2014; 2 (05) 2325967114532424
- 25 Fritz S, Jones AK. Guidelines for anti-scatter grid use in pediatric digital radiography. Pediatr Radiol 2014; 44 (03) 313-321
- 26 Jones JC, Schultz C, Podvin C, Mikhail D, Radel LC. Point-of-care ultrasound (POCUS) for sideline youth sports coverage. Curr Rev Musculoskelet Med 2023; 16 (11) 493-500
- 27 Rehani MM, Mataac MT, Kaviani P, Kalra MK, Li X. Are high-dose CT examinations on the rise?. Br J Radiol 2025 July 24 (Epub ahead of print)
- 28 Kox LS, Kuijer PPFM, Kerkhoffs GMMJ, Maas M, Frings-Dresen MHW. Prevalence, incidence and risk factors for overuse injuries of the wrist in young athletes: a systematic review. Br J Sports Med 2015; 49 (18) 1189-1196
- 29 Kox LS, Kraan RBJ, van Dijke KF. et al. Systematic assessment of the growth plates of the wrist in young gymnasts: development and validation of the Amsterdam MRI assessment of the Physis (AMPHYS) protocol. BMJ Open Sport Exerc Med 2018; 4 (01) e000352
- 30 Arnold A, Thigpen CA, Beattie PF, Kissenberth MJ, Shanley E. Overuse physeal injuries in youth athletes. Sports Health 2017; 9 (02) 139-147
- 31 Beck B, Drysdale L. Risk factors, diagnosis and management of bone stress injuries in adolescent athletes: a narrative review. Sports (Basel) 2021; 9 (04) 52
- 32 Schreiber VM. Stress fractures and overuse injuries in children and adolescents. J Pediatr Soc North Am 2024; 7: 100029
- 33 Kaeding CC, Miller T. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am 2013; 95 (13) 1214-1220
- 34 Nattiv A, Kennedy G, Barrack MT. et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med 2013; 41 (08) 1930-1941
- 35 Mountjoy M, Ackerman KE, Bailey DM. et al. 2023 International Olympic Committee's (IOC) consensus statement on relative energy deficiency in sport (REDs). Br J Sports Med 2023; 57 (17) 1073-1097
- 36 Brown KA, Dewoolkar AV, Baker N, Dodich C. The female athlete triad: special considerations for adolescent female athletes. Transl Pediatr 2017; 6 (03) 144-149
- 37 Weiss Kelly AK, Hecht S. Council on Sports Medicine and Fitness. The female athlete triad. Pediatrics 2016; 138 (02) e20160922
- 38 Shuhart CR, Yeap SS, Anderson PA. et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J Clin Densitom 2019; 22 (04) 453-471
- 39 Bennell KL, Malcolm SA, Thomas SA. et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med 1996; 24 (06) 810-818
- 40 Barrack MT, Gibbs JC, De Souza MJ. et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med 2014; 42 (04) 949-958
- 41 Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 2007; 39 (10) 1867-1882
- 42 Chau MM, Klimstra MA, Wise KL. et al. Osteochondritis dissecans: current understanding of epidemiology, etiology, management, and outcomes. J Bone Joint Surg Am 2021; 103 (12) 1132-1151
- 43 Delgado J, Jaramillo D, Chauvin NA. Imaging the injured pediatric athlete: upper extremity. Radiographics 2016; 36 (06) 1672-1687
- 44 Accadbled F, Vial J, Sales de Gauzy J. Osteochondritis dissecans of the knee. Orthop Traumatol Surg Res 2018; 104 (1S): S97-S105
- 45 Patel M, Francavilla ML, Lawrence JTR. et al. Osteochondral lesion of the talus in children: are there MRI findings of instability?. Skeletal Radiol 2020; 49 (08) 1305-1311
- 46 Danger F, Wasyliw C, Varich L. Osteochondroses. Semin Musculoskelet Radiol 2018; 22 (01) 118-124
- 47 Candan B, Torun E, Dikici R. The prevalence of accessory ossicles, sesamoid bones, and biphalangism of the foot and ankle: a radiographic study. Foot Ankle Orthop 2022; 7 (01) 24 730114211068792
- 48 Roche AJ, Calder JDF, Lloyd Williams R. Posterior ankle impingement in dancers and athletes. Foot Ankle Clin 2013; 18 (02) 301-318
- 49 von Brandis E, Zadig PK, Avenarius DFM. et al. Whole body magnetic resonance imaging in healthy children and adolescents. Bone marrow appearances of the axial skeleton. Eur J Radiol 2022; 154: 110425
- 50 Tarantino U, Greggi C, Cariati I. et al. Reviewing bone marrow edema in athletes: a difficult diagnostic and clinical approach. Medicina (Kaunas) 2021; 57 (11) 1143
- 51 Tsukada K, Yasui Y, Morimoto S. et al. Juxta-articular osteoid osteoma of the calcaneus in a young athlete treated with subtalar arthroscopic excision: a case report. Orthop J Sports Med 2020; 8 (08) 2325967120944915
- 52 Krych A, Odland A, Rose P. et al. Oncologic conditions that simulate common sports injuries. J Am Acad Orthop Surg 2014; 22 (04) 223-234
- 53 Andronikou S, Kraft JK, Offiah AC. et al. Whole-body MRI in the diagnosis of paediatric CNO/CRMO. Rheumatology (Oxford) 2020; 59 (10) 2671-2680
- 54 Foster HE, Cabral DA. Is musculoskeletal history and examination so different in paediatrics?. Best Pract Res Clin Rheumatol 2006; 20 (02) 241-262
- 55 Matava MJ, Patton CM, Luhmann S, Gordon JE, Schoenecker PL. Knee pain as the initial symptom of slipped capital femoral epiphysis: an analysis of initial presentation and treatment. J Pediatr Orthop 1999; 19 (04) 455-460
- 56 Vermeulen R, Almusa E, Buckens S. et al. Complete resolution of a hamstring intramuscular tendon injury on MRI is not necessary for a clinically successful return to play. Br J Sports Med 2020 June 19 (Epub ahead of print)
- 57 Wangensteen A, Bahr R, Van Linschoten R. et al. MRI appearance does not change in the first 7 days after acute hamstring injury—a prospective study. Br J Sports Med 2017; 51 (14) 1087-1092
- 58 Nauta HJA, van der Made AD, Tol JL, Reurink G, Kerkhoffs GM. Satisfactory clinical outcome of operative and non-operative treatment of avulsion fracture of the hamstring origin with treatment selection based on extent of displacement: a systematic review. Knee Surg Sports Traumatol Arthrosc 2021; 29 (06) 1813-1821
- 59 deMeireles AJ, Kent III RN, Bedi A, Crawford EA. Degree of tendon retraction and younger age are associated with functional decline following nonoperative management of complete proximal hamstring ruptures. Arthrosc Sports Med Rehabil 2023; 5 (02) e389-e394
