Zusammenfassung:
Die zerebrovaskuläre Autoregulation sichert in einem Bereich mittlerer Blutdruckwerte
von 50 - 170 mmHg auch bei Blutdruckschwankungen die Konstanz der Hirndurchblutung.
Statische und dynamische myogene Mechanismen dämpfen plötzliche Blutdruckschwankungen.
Neurogene Einflüsse sympathischer, noradrenerger Fasern regulieren besonders die größeren,
proximalen Hirngefäße, aber auch Gefäße mit nur 15 - 20 μm Durchmesser. Parasympathische,
gefäßerweiternde Impulse sind von geringerem Einfluss. Monoaminerge Hirnstammkerne
wie der dorsale Raphekern, der Locus coeruleus oder der Nucleus reticularis pontis
oralis nehmen zusätzlich Einfluss auf die Gefäßmodulation. Metabolische, lokale, parenchymale
und endotheliale Substanzen spielen für die Anpassung des Hirngefäßtonus ebenfalls
eine entscheidende Rolle. Besonders zu nennen sind Stickoxid, Calcitonin gene related
peptide, Substanz P, Endothelin, Kaliumkanäle sowie Entzündungsmediatoren wie Histamin,
Bradykinin, Arachidonsäure, Prostaglandine, Leukotriene, freie Radikale oder Serotonin.
Die klinische Überprüfung der Autoregulation kann durch kurzfristige Veränderungen
des Blutdrucks erfolgen. Hierzu eignen sich Substanzen wie Angiotensin, Phenylephrin
oder Natrium-Nitroprussid. Blutdruckänderungen können auch durch eine passive Kipptischbelastung,
die „leg-cuff”-Methode nach Aaslid oder das Valsalva-Manöver induziert werden. Die
Autoregulation lässt sich auch durch Berechnung der Kohärenz und Phasenbeziehung zwischen
Modulationen von Blutdruck und Hirndurchblutung in Ruhe oder während metronomischer
Atmung bestimmen. Die Messung der Hirndurchblutung erfolgt mittels transkranieller
Doppler-Sonographie der proximalen Arteria cerebri media. Teilweise umstritten ist,
ob eine Abnahme der hier gemessenen Strömungsgeschwindigkeit im Sinne einer Vasodilatation
am beschallten Gefäßsegment zu werten ist oder eine Blutflussreduktion infolge einer
Minderung der Perfusion nachgeschalteter Gefäßabschnitte darstellt. Ausführlich werden
zahlreiche klinische und tierexperimentelle Studien erörtert, die deutliche Hinweise
auf eine Konstanz des beschallten Gefäßdurchmessers und damit eine Abnahme der nachgeschalteten
Perfusion geben. Direkte, intraoperative Messungen des Gefäßdurchmessers bestärken
die Schlussfolgerung, dass dopplersonographisch gemessene Änderungen der Strömungsgeschwindigkeit
in der proximalen Arteria cerebri media auf Perfusionsänderungen in nachgeschalteten
Gefäßbereichen hinweisen. Somit eignet sich die transkranielle Doppler-Sonographie
zur Beurteilung der zerebralen Autoregulation.
Mechanisms of Cerebral Autoregulation, Assessment and Interpretation by Means of Transcranial
Doppler Sonography:
Cerebrovascular autoregulation assures constancy of cerebral perfusion despite blood
pressure changes, as long as mean blood pressure remains in a range between 50 - 170
mmHg. Static and dynamic myogenic mechanisms dampen sudden blood pressure changes.
Neurogenic influences of sympathetic, noradrenergic fibers modulate primarily proximal,
large diameter segments of cerebral arteries, but also small 15 - 20 μm diameter vessels.
Parasympathetic, vasodilating impulses are of less influence. Monoaminergic brainstem
centers such as the dorsal raphe nucleus, locus coeruleus or nucleus reticularis pontis
oralis also influence vessel tone. Metabolic, local parenchymal and endothelial substances
have major impact on cerebral vessel tone. Particularly important are nitric oxide,
calcitonin gene related peptide, substance P, endothelin, potassium channels and autocoids
such as histamine, bradykinin, arachidonic acid, prostanoids, leucotrienes, free radicals
or serotonin. The clinical examination of autoregulation is mostly based on brief
blood pressure changes induced by drugs such as angiotensin, phenylephrine or sodium
nitroprusside, or by challenge maneuvers. Frequently, blood pressure is challenged
by a tilt-table maneuver, the “leg-cuff”-method according to Aaslid, or a Valsalva
maneuver. The analysis of coherence and phase relation between spontaneous or metronomic
breathing modulation of blood pressure and brain perfusion also assesses autoregulatory
function. Cerebral blood flow is determined by means of transcranial Doppler sonography,
mostly of the proximal segment of the mid-cerebral artery. There is some controversy
whether a decrease of cerebral blood flow velocity measured at this segment indicates
vasodilatation at the insonated segment or reflects blood flow reduction due to decreased
perfusion of down-stream vessel segments. Various clinical and animal studies are
presented demonstrating diameter constancy of the insonated mid-cerebral artery segment
and thus indicating that slowing of mid cerebral artery blood flow velocity as assessed
by transcranial Doppler sonography is due to a decrease of down-stream perfusion.
Direct, intraoperative measurements of vessel diameter confirm this conclusion.
Literatur
- 1
Bondar R L, Dunphy P T, Moradshahi P, Kassam M S, Blaber A P, Stein F, Freeman R.
Cerebrovascular and cardiovascular responses to graded tilt in patients with autonomic
failure.
Stroke.
1997;
28
1677-1685
- 2
Aaslid R, Newell D W, Stooss R, Sorteberg W, Lindegaard K F.
Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous
transcranial Doppler recordings in humans.
Stroke.
1991;
22
1148-1154
- 3 Diehl R R, Berlit P. Funktionelle Dopplersonographie in der Neurologie. Berlin Heidelberg
New York: Springer 1996
- 4 Sorteberg W. Cerebral artery blood flow velocity and cerebral blood flow. In: Newell
DW, Aaslid R (Hrsg) Transcranial Doppler New York: Raven Press Ltd. 1992: 57-66
- 5
Low P A, Novak V, Spies J M, Novak P, Petty G W.
Cerebrovascular regulation in the postural orthostatic tachycardia syndrome (POTS).
Am J Med Sci.
1999;
317
124-133
- 6
Petty G W, Wiebers D O, Meissner I.
Transcranial Doppler ultrasonography: clinical applications in cerebrovascular disease.
Majo Clin Proc.
1990;
65
1350-1364
- 7 Aaslid R. The Doppler principle applied to measurement of blood flow velocity in
cerebral arteries. In: Aaslid R (Hrsg) Transcranial Doppler sonography Wien: Springer-Verlag
1986: 22-38
- 8 Widder B. Doppler- und Duplexsonographie der hirnversorgenden Arterien. Berlin Heidelberg:
Springer-Verlag 1995
- 9 Santalucia P, Feldmann E. The basic transcranial Doppler examination: technique
and anatomy. In: Babikian VL, Wechsler LR (Hrsg) Transcranial Doppler ultrasonography
Boston: Butterworth-Heinemann 1999: 13-31
- 10
Giller C A, Bowman G, Dyer H, Mootz L, Krippner W.
Cerebral arterial diameters during changes in blood pressure and carbon dioxide during
craniotomy.
Neurosurgery.
1993;
32
737-741
discussion 741-742
- 11
Giller C A, Iacopino D G.
Use of middle cerebral velocity and blood pressure for the analysis of cerebral autoregulation
at various frequencies: the coherence index.
Neurol Res.
1997;
19
634-640
- 12
Aaslid R, Lindegaard K F, Sorteberg W, Nornes H.
Cerebral autoregulation dynamics in humans.
Stroke.
1989;
20
45-52
- 13 Novak P, Novak V, Low P A, Petty G W. Transcranial Doppler evaluation in disorders
of reduced orthostatic tolerance. In: Low PA (Hrsg). Clinical autonomic disorders
Philadelphia: Lippincott-Raven 1997: 349-368
- 14
Diehl R R, Linden D, Lucke D, Berlit P.
Phase relationship between cerebral blood flow velocity and blood pressure. A clinical
test of autoregulation.
Stroke.
1995;
26
1801-1804
- 15
Diehl B, Diehl R R, Stodieck S R, Ringelstein E B.
Spontaneous oscillations in cerebral blood flow velocities in middle cerebral arteries
in control subjects and patients with epilepsy.
Stroke.
1997;
28
2457-2459
- 16 Symon L. Pathological regulation in cerebral ischemia. In: Wood JH (Hrsg). Cerebral
blood flow. Physiologic and clinical aspects New York: McGraw Hill 1987: 423-424
- 17
Paulson O B, Waldemar G.
Role of the local renin-angiotensin system in the autoregulation of the cerebral circulation.
Blood Vessels.
1991;
28
231-235
- 18
Wahl M, Schilling L.
Regulation of cerebral blood flow - a brief review.
Acta Neurochir Suppl.
1993;
59
3-10
- 19
Ursino M.
Mechanisms of cerebral blood flow regulation.
Crit Rev Biomed Eng.
1991;
18
255-288
- 20
McManis P G, Schmelzer J D, Zollman P J, Low P A.
Blood flow and autoregulation in somatic and autonomic ganglia. Comparison with sciatic
nerve.
Brain.
1997;
120
445-449
- 21
Low P A, Tuck R R.
Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow
in the sciatic nerve of the rat.
J Physiol (Lond).
1984;
347
513-524
- 22
Takeuchi M, Low P A.
Dynamic peripehral nerve metabolic and vascular responses to exsanguination.
Am J Physiol.
1987;
253
E349-353
- 23
Brian Jr J E, Faraci F M, Heistad D D.
Recent insights into the regulation of cerebral circulation.
Clin Exp Pharmacol Physiol.
1996;
23
449-457
- 24
Bayliss M M.
On the local reaction of the arterial wall to changes in intraluminal pressure.
J Physiol.
1902;
28
220-231
- 25 Johnson P C. The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV (Hrsg). Handbook
of Physiology. The Cardiovascular System: Vascular Smooth Muscle Bethesda, MD: American
Physiological Society 1980
- 26
Wallis S J, Firth J, Dunn W R.
Pressure-induced myogenic responses in human isolated cerebral resistance arteries.
Stroke.
1996;
27
2287-2290; discussion 2291
- 27
Purdy P E, Bevan J A.
Adrenergic innervation of large cerebral blood vessels of the rabbit studied by fluorescence
microscopy. Absence of features that might contribute to non-uniform change in cerebral
blood flow.
Stroke.
1977;
8
82-87
- 28
Owman D, Edvinsson L, Nielsen K C.
Autonomic neuroreceptor mechanisms in brain vessels.
Blood Vessels.
1974;
11
2-31
- 29
Edvinsson L.
Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors
and their effects on cerebral blood flow.
Acta Physiol Scand Suppl.
1975;
427
1-35
- 30
Morita Y, Hardebo J E, Bouskela E.
Influence of cerebrovascular sympathetic, parasympathetic, and sensory nerves on autoregulation
and spontaneous vasomotion.
Acta Physiol Scand.
1995;
154
121-130
- 31
Chorobsky J, Penfield W.
Cerebral vasodilator nerves and their pathway from the medulla oblongata.
Arch Neurol Psychiatr.
1932;
28
1257
- 32
Cobb S, Finesinger J E.
The vagal pathway of the vasodilator impulses.
Arch Neurol Psychiatr.
1932;
28
1243
- 33
Pinard E, Purves M J, Seylaz J, Vasquez J V.
The cholinergic pathway to cerebral blood vessels. II. Physiological studies.
Pflugers Arch.
1979;
379
165-172
- 34
Edvinsson L, Hara H, Uddman R.
Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue:
colocalization with different peptides.
J Cereb Blood Flow Metab.
1990;
9
212-218
- 35
Hara H, Weir B.
Pathway of acetylcholinesterase containing nerves to the major cerebral arteries in
rats.
J Comp Neurol.
1986;
250
245-252
- 36
Hara H, Hamill G S, Jacobowitz D M.
Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with
vasoactive intestinal polypeptide.
Brain Res Bull.
1985;
14
179-188
- 37 Moskalenko Y E, Weinstein G. About the neurogenic mechanism of the total cerebral
blood flow regulation during changes of systemic blood pressure. In: Mchedlishvili
GI, Purves MJ, Kovach AGB (Hrsg). Regulation of cerebral circulation Budapest: Akademiai
Kiado 1979: 39
- 38 Moskalenko Y E, Weinstein G B, Demchenko I T, Kislyakov Y Y, Krivchenko A I. Biophysical
aspects of cerebral circulation. Oxford: Pergamon Press 1980
- 39 McHedlishvili G I. Arterial behavior and blood circulation in the brain. New York:
Plenum Press 1986
- 40
McHedlishvili G.
Physiological mechanisms controlling cerebral blood flow.
Stroke.
1980;
11
240-248
- 41 Pereira J MMS. Histological, histochemical and microsurgical research on anatomo-physiological
basis of neurogenic control of cerebral blood flow. In: Gotoh F, Nagai H, Tazaki Y
(Hrsg). Cerebral blood flow and metabolism 1979
- 42
Hoff J T, MacKenzie E T, Harper A M.
Responses of the cerebral circulation to hypercapnia and hypoxia after 7th cranial
nerve transection in baboons.
Circ Res.
1977;
40
258-262
- 43
Heistad D D, Marcus M L.
Total and regional cerebral blood flow during stimulation of carotid baroreceptors.
Stroke.
1976;
7
239-243
- 44
Bonvento G, MacKenzie E T, Edvinsson L.
Serotonergic innervation of the cerebral vasculature: relevance to migraine and ischaemia.
Brain Res Rev.
1991;
16
257-263
- 45
MacKenzie E T, Scatton B.
Cerebral circulatory and metabolic effects of perivascular neurotransmitters.
CRC Crit Rev Clin Neurobiol.
1987;
2
357-419
- 46
Raichle M E, Hartman B K, Eichling J O, Sharpe L G.
Central noradrenergic regulation of cerebral blood flow and vascular permeability.
Proc Natl Acad Sci U S A.
1975;
72
3726-3730
- 47
Ohta K, Gotoh F, Shimazu K, Amano T, Komatsumoto S, Hamada J, Takahashi S.
Locus coeruleus stimulation exerts different influences on the dynamic changes of
cerebral pial and intraparenchymal vessels.
Neurol Res.
1991;
13
164-167
- 48
Kalaria R N, Stockmeier C A, Harik S I.
Brain microvessels are innervated by locus coeruleus noradrenergic neurons.
Neuroscience Letters.
1989;
97
203-208
- 49
Bonvento G, Lacombe P, Seylaz J.
Effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood
flow in the rat.
J Cereb Blood Flow Metab.
1989;
9
251-255
- 50
Saito A, Lee T L.
Serotonin as an alternative transmitter in sympathetic nerves of large cerebral arteries
of the rabbit.
Circ Res.
1987;
60
220-228
- 51
Chang J Y, Hardebo J E, Owman C.
Kinetic studies on uptake of serotonin and noradrenaline into pial arteries of rats.
J Cereb Blood Flow Metab.
1990;
10
22-31
- 52 Maeda M, Takahashi K, Miyazaki M, Ishii S. The role of the central monoamine system
and the cholinoceptive pontine area on the oscillation of ICP ‘pressure waves’. In:
Miller JD, Teasdale GM, Rowan JO (Hrsg). Intracranial pressure Berlin: Springer Verlag
1986
- 53
Sakas D E, Moskowitz M A, Wei E P, Kontos H A, Kano M, Ogilvy C S.
Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like
mechanisms during acute severe hypertension or seizures.
Proc Natl Acad Sci U S A.
1989;
86
1401-1405
- 54
Furchgott R F, Zawadzki J V.
The obligatory role of endothelial cells in the relaxation of arterial smooth muscle
by acetylcholine.
Nature.
1980;
288
373-376
- 55
Ignarro L J, Buga G M, Woods K S, Byrns R E, Chaudhuri G.
Endothelium-derived relaxing factor produced and released from artery and vein is
nitric oxide.
Proc Natl Acad Sci USA.
1987;
84
9265-9269
- 56
Karaki H.
Ca2+ localization and sensitivity in vascular smooth muscle.
Trends Pharmacol Sci.
1989;
10
320-325
- 57
Toda N, Okamura T.
Role of nitric oxide in neurally induced cerebroarterial relaxation.
J Pharmacol Exp Ther.
1991;
258
1027-1034
- 58
Murphy S, Minor R J, Welk G, Harrison D.
Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric
oxide.
J Neurochem.
1990;
55
349-351
- 59
Lee T, Sarwinski S.
Nitric oxidergic neurogenic vasodilation in the porcine basilar artery.
Blood Vessels.
1991;
28
407-412
- 60
Garthwaite J, Garthwaite G, Palmer R, Moncada S.
NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain
slices.
Eur J Pharmacol.
1989;
172
413-416
- 61
Garthwaite J.
Glutamate, nitric oxide and cell-cell signalling in the nervous system.
Trends Neurosci.
1991;
14
60-67
- 62
Busse R, Mulsch A.
Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells.
FEBS Lett.
1990;
275
87-90
- 63
Bredt D, Hwang P, Snyder S.
Localization of nitric oxide synthase indicating a neural role for nitric oxide.
Nature.
1990;
347
768-769
- 64
Bredt D, Snyder S.
Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.
Proc Natl Acad Sci USA.
1989;
86
9030-9033
- 65
Foerstermann U, Schmidt H HHW, Pollock J S, Heller M, Murad F.
Enzymes synthetizing guanylate cyclase-activating factors in endothelial cells, neuroblastoma
cells, and rat brain.
J Cardiovasc Pharmacol.
1991;
17
57-64
- 66
Nozaki K, Moskowitz M A, Maynard K I, Koketsu N, Dawson T M, Bredt D S, Snyder S H.
Possible origins and distribution of immunoreactive nitric oxide synthase-containing
nerve fibers in cerebral arteries.
J Cereb Blood Flow Metab.
1993;
13
70-79
- 67
Yoshida K, Okamura T, Kimura H, Bredt D S, Snyder S H, Toda N.
Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries.
Brain Res.
1993;
629
67-72
- 68
Murphy S, Simmons M L, Agullo L, Garcia A, Feinstein D L, Galea E, Reis D J, Minc-Golomb D,
Schwartz J P.
Synthesis of nitric oxide in CNS glial cells.
Trends Neurosci.
1993;
16
323-328
- 69
Brain Jr J E, Kennedy R H.
Modulation of cerebral arterial tone by endothelium-derived relaxing factor.
Am J Physiol.
1993;
264
H1245-1250
- 70
Kovach A G, Szabo C, Benyo Z, Csaki C, Greenberg J H, Reivich M.
Effects of NG-nitro-L-arginine and L-arginine on regional cerebral blood flow in the
cat.
J Physiol (Lond).
1992;
449
183-196
- 71
Thomsen L L, Iversen H K, Brinck T A, Olesen J.
Arterial supersensitivity to nitric oxide (nitroglycerin) in migraine sufferers.
Cephalalgia.
1993;
19
395-399
- 72
Bellantonio P, Micieli G, Buzzi M G, Marcheseli S, Castellano A E, Rossi F, Nappi G.
Haemodynamic correlates of early and delayed responses to sublingual administration
of isosorbide dinitrate in migraine patients: a transcranial Doppler study.
Cephalalgia.
1997;
17
183-187
- 73
Wahl M, Schilling L, Parsons A A, Kaumann A.
Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the
pial artery dilatation elicited by cortical spreading depression.
Brain Res.
1994;
637
204-210
- 74
Lauritzen M, Hansen A J.
The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading
depression.
J Cereb Blood Flow Metab.
1992;
12
223-229
- 75
Faraci F M.
Role of nitric oxide in regulation of basilar artery tone in vivo.
Am J Physiol.
1990;
259
H1216-1221
- 76
Faraci F M.
Role of endothelium-derived relaxing factor in cerebral circulation: large arteries
vs. microcirculation.
Am J Physiol.
1991;
261
H1038-1042
- 77
Faraci F M, Heistad D D.
Endothelium-derived relaxing factor inhibits constrictor responses of large cerebral
arteries to serotonin.
J Cereb Blood Flow Metab.
1992;
12
500-506
- 78
Kozniewska E, Oseka M, Stys T.
Effects of endothelium-derived nitric oxide on cerebral circulation during normoxia
and hypoxia in the rat.
J Cereb Blood Flow Metab.
1992;
12
311-317
- 79
Northington F J, Matherne G P, Berne R M.
Competitive inhibition of nitric oxide synthase prevents the cortical hyperemia associated
with peripheral nerve stimulation.
Proc Natl Acad Sci USA.
1992;
89
6649-6652
- 80
Tanaka K, Gotoh F, Gomi S, Takashima S, Mihara B, Nogawa S, Nagata E.
Inhibition of nitric oxide synthesis induces a significant reduction in local cerebral
blood flow in the rat.
Neurosci Lett.
1991;
127
129-132
- 81
Wang Q, Paulson O B, Lassen N A.
Is autoregulation of cerebral blood flow in rats influenced by nitro-L-arginine, a
blocker of the synthesis of nitric oxide.
Acta Physiol Scand.
1992;
145
297-298
- 82
Wahl M, Parsons A A, Schilling L, Kaumann A J.
Reduction of pial arterial dilatation during cortical spreading depression by application
of an inhibition of nitric oxide synthesis.
Cereb Blood Flow Metabol.
1993;
13
177
- 83
Jaiswal N, Jaiswal R K, Malik K U.
Muscarinic receptor-mediated prostacyclin and cGMP synthesis in cultured vascular
cells.
Mol Pharmacol.
1991;
40
101-106
- 84 Campbell W B, Halushka P V. Lipid-derived autacoids. Eicosanoids and platelet-activating
factors. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (Hrsg). Goodman
& Gilman's The pharmacological basis of therapeutics New York: McGraw-Hill 1996; :
601-616
- 85
Durieu-Trautmann O, Federici C, Creminon C, Foignant-Chaverot N, Roux F, Claire M,
Strosberg A D, Couraud P O.
Nitric oxide and endothelin secretion by brain microvessel endothelial cells: regulation
by cyclic nucleotides.
J Cell Physiol.
1993;
155
104-111
- 86
Minc-Golomb D, Tsarfaty I, Schwartz J P.
Expression of inducible nitric oxide synthase by neurones following exposure to endotoxin
and cytokine.
Br J Pharmacol.
1994;
112
720-722
- 87
Hongo K, Tsukahara T, Kassell N, Ogawa H.
Effect of subarachnoid hemorrhage on calcitonin gene-related peptide-induced relaxation
in rabbit basilar artery.
Stroke.
1989;
20
100-104
- 88
McCulloch J, Uddman R, Kingman T, Edvinsson L.
Calcitonin gene-related peptide: functional role in cerebrovascular regulation.
Proc Natl Acad Sci USA.
1986;
83
5731-5735
- 89
Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R.
Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor
effects.
J Cereb Blood Flow Metab.
1987;
7
720-728
- 90
Edwards R M, Stack E J, Trizna W.
Calcitonin gene-related peptide stimulates adenylate cyclase and relaxes intracerebral
arterioles.
J Pharmacol Exp Ther.
1991;
257
1020-1024
- 91
Hong K W, Pyo K M, Lee W S, Yu S S, Rhim B Y.
Pharmacological evidence that calcitonin gene-related peptide is implicated in cerebral
autoregulation.
Am J Physiol.
1994;
266
H11-16
- 92
Kitazono T, Heistad D D, Faraci F M.
Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in
vivo.
Am J Physiol.
1993;
265
H581-585
- 93
Wei E P, Moskowitz M A, Boccalini P, Kontos H A.
Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced
vasodilatation in feline cerebral arterioles.
Circ Res.
1992;
70
1313-1319
- 94
Moskowitz M A, Wei E P, Saito K, Kontos H A.
Trigeminalectomy modifies pial arteriolar responses to hypertension or norepinephrine.
Am J Physiol.
1988;
255
H1-6
- 95
Jansen I, Alafaci C, McCulloch J, Uddman R, Edvinsson L.
Tachykinins (substance P, Neurokinin A, neuropeptide K, and neurokin B) in the cerebral
circulation: Vasomotor responses in vitro and in situ.
J Cereb Blood Flow Metab.
1991;
11
567-575
- 96
Rosenblum W I, Shimizu T, Nelson G H.
Endothelium-dependent effects of substance P and calcitonin gene-related peptide on
mouse pial arterioles.
Stroke.
1993;
24
1043-1047
discussion 1047-1048
- 97
Moskowitz M A, Brody M, Liu-Chen L Y.
In vitro release of immunoreactive substance P from putative afferent nerve endings
in bovine pia arachnoid.
Neuroscience.
1983;
9
809-814
- 98
O'Shaughnessy C T, Waldron G J, Connor H E.
Lack of effect of sumatriptan and UK-14, 304 on capsaicin-induced relaxation of guinea-pig
isolated basilar artery.
Br J Pharmacol.
1993;
108
191-195
- 99
Pfister H W, Kumpfel T, Koedel U.
Involvement of substance P in pial arteriolar vasodilatation during pneumococcal meningitis
in the rat.
Neuroreport.
1995;
6
1301-1305
- 100
Markowitz S, Saito K, Moskowitz M A.
Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura
mater but not brain.
J Neurosci.
1987;
7
4129-4136
- 101
Faraci F M, Kadel K A, Heistad D C.
Vascular responses of dura mater.
Am J Physiol.
1989;
257
H157-161
- 102
Edvinsson L, Brodin E, Jansen I, Uddman R.
Neurokinin A in cerebral vessels: Characterization, localization and effect in vitro.
Regul Pept.
1988;
20
181-197
- 103
Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S.
Cloning and expression of a cDNA encoding an endothelin receptor.
Nature.
1990;
348
730-732
- 104
Sakurai T, Yanigisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T.
Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor.
Nature.
1990;
348
732-735
- 105
Davenport A P, Morton A J.
125 I ET-1, ET-2, and ET-3 and vasoactive intestinal contractor are present in adult
rat brain and neurone-enriched primary cultures of embryonic brain cells.
Brain Res.
1991;
554
278-285
- 106
Murray M A, Faraci F M, Heistad D D.
Effect of protein kinase C inhibitors on endothelin- and vasopressin-induced constriction
of the rat basilar artery.
Am J Physiol.
1992;
263
H1643-1649
- 107
Kitazono T, Faraci F M, Heistad D D.
Effect of norepinephrine on rat basilar artery in vivo.
Am J Physiol.
1993;
264
H178-182
- 108
Wahl M.
Local chemical, neural, and humoral regulation of cerebrovascular resistance vessels.
J Cardiovasc Pharmacol.
1985;
7
S36-46
- 109
Wahl M, Unterberg A, Baethmann A, Schilling L.
Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema.
J Cereb Blood Flow Metabol.
1988;
8
621-634
- 110 Schilling L, Wahl M. Histaminergic effects on cerebral hemodynamics. In: Phyllis
JW (Hrsg). The regulation of cerebral blood flow Boca Raton: CRC Press 1993: 113-128
- 111 Wahl M, Schilling L. Effects of bradykinin in the cerebral microcirculation. In:
Phyllis JW (Hrsg). The regulation of cerebral blood flow Boca Raton: CRC Press 1993:
315-328
- 112
Unterberg A, Schmidt W, Wajl M, Ellis E F, Marmarou A, Baethmann A.
Evidence against leukotrienes as mediators of brain edema.
J Neurosurg.
1991;
74
773-780
- 113
Jones S C, Bose B, Furlan A J, Friel H T, Easley K A, Meredith M P, Little J R.
CO2 reactivity and heterogeneity of cerebral blood flow in ischemic, border zone, and
normal cortex.
Am J Physiol.
1989;
257
H473-H482
- 114
Borgstrom L, Johannsson H, Siesjo B K.
The relationship between arterial po2 and cerebral blood flow in hypoxic hypoxia.
Acta Physiol Scand.
1975;
93
423-432
- 115
Kety S S, Schmidt C F.
The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral
blood flow and cerebral oxygen consumption of normal young men.
J Clin Invest.
1948;
27
484-492
- 116
Kontos H A, Wei E P, Raper A J, Rosenblum W I, Navari R M, Patterson J LJ.
Role of tissue hypoxia in local regulation of cerebral microcirculation.
Am J Physiol.
1978;
234
H582-H591
- 117
Ekstrom-Jodal B, Haggendal E, Linder L E, Nilsson N J.
Cerebral blood flow autoregulation at high arterial pressures and different levels
of carbon dioxide tension in dogs.
Eur Neurol.
1971;
6
6-10
- 118
Kontos H A.
Validity of cerebral arterial blood flow calculations from velocity measurements.
Stroke.
1989;
20
1-3
- 119 Phillis J W. Cerebral vascular responses to hypoxia, hyper- and hypocapnia, and
hypotension. In: Phillis JW (Hrsg). The regulation of cerebral blood flow Boca Raton:
CRC Press 1993: 249-265
- 120
Novak V, Novak P, Spies J M, Low P A.
Autoregulation of cerebral blood flow in orthostatic hypotension.
Stroke.
1998;
29
104-111
- 121
Brooks D J, Redmond S, Mathias C J, Bannister R, Symon L.
The effect of orthostatic hypotension on cerebral blood flow and middle cerebral artery
velocity in autonomic failure, with observations on the action of ephedrine.
J Neurol Neurosurg Psychiatry.
1989;
52
962-966
- 122
Gambhir S, Inao S, Tadokoro M, Nishino M, Ito K, Ishigaki T, Kuchiwaki H, Yoshida J.
Comparison of vasodilatory effect of carbon dioxide inhalation and intravenous acetazolamide
on brain vasculature using positron emission tomography.
Neurol Res.
1997;
19
139-144
- 123
Kuwabara Y, Ichiya Y, Sasaki M, Akashi Y, Yoshida T, Fukumura T, Masuda K.
(A comparison of the cerebrovascular responses to CO2 and Diamox in patients with unilateral occlusive cerebral arteries: a H2(15)O PET
study).
Kaku Igaku.
1995;
32
569-577
- 124
Ringelstein E B, Van Eyck S, Mertens I.
Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison
of CO2 to acetazolamide.
J Cereb Blood Flow Metab.
1992;
12
162-168
- 125
Steinling M.
The measurement of cerebral perfusion and hemodynamic reserve using SPECT: use in
cerebral vascular pathology.
Ann Radiol.
1990;
33
156-169
- 126
Ulrich P T, Becker T, Kempski O S.
Correlation of cerebral blood flow and MCA flow velocity measured in healthy volunteers
during acetazolamide and CO2-stimulation.
J Neurol Sci.
1995;
129
120-130
- 127
Werner C, Kochs E.
Cerebral blood flow and cerebral blood flow velocity during angiotensin-induced arterial
hypertension in dogs.
Can J Anesth.
1993;
40
755-760
- 128
Larsen F S, Olsen K S, Ejlersen E, Hansen B A, Paulson O B, Knudsen G M.
Cerebral blood flow autoregulation and transcranial Doppler sonography in patients
with cirrhosis.
Hepatology.
1995;
22
730-736
- 129
Smielewski P, Czosnyka M, Kirkpatrick P, McEroy H, Rutkowska H, Pickard J D.
Assessment of cerebral autoregulation using carotid artery compression.
Stroke.
1996;
27
2197-2203
- 130
Heckmann J G, Hilz M J, Haagler H, Mück-Weymann M, Neundorfer B.
Transcranial Doppler sonography during acute 80 degrees head-down tilt (HDT) for the
assessment of cerebral autoregulation in humans.
Neurol Res.
1999;
21
457-462
- 131
Heckmann J G, Mück-Weymann M, Hilz M J, Katalinic A.
Autoregulative response of cerebral vessels to elevation in arterial blood pressure,
a study using stress TCD.
Clin Auton Res.
1997;
7
47-48
- 132
Heckmann J G, Mück-Weymann M, Katalinic A, Hilz M J, Claus D, Neundorfer B.
TCD-Ergometer-Test bei Patienten mit chronischem Kopfschmerz vom Spannungstyp (CKST).
Nervenarzt.
1998;
69
131-136
- 133
Heckmann J G, Hilz M J, Katalinic A, Marthol H, Mück-Weymann M, Neundörfer B.
Myogenic cerebrovascular autoregulation in migraine measured by stress transcranial
Doppler sonography.
Cephalalgia.
1998;
18
133-137
- 134
Tiecks F P, Planck J, Haberl R L, Brandt T.
Reduction in posterior cerebral artery blood flow velocity during caloric vestibular
stimulation.
J Cereb Blood Flow Metab.
1996;
16
1379-1382
- 135
Heckmann J G, Leis S, Mück-Weymann M, Hilz M J, Neundörfer B.
Vestibular evoked blood flow response in the basilar artery.
Acta Neurol Scand.
1999;
100
12-17
- 136
Tiecks F P, Douville C, Byrd S, Lam A M, Newell D W.
Evaluation of impaired cerebral autoregulation by the Valsalva maneuver.
Stroke.
1996;
27
1177-1182
- 137 Bennaroch E E, Sandroni P, Low P A. The Valsalva maneuver. In: Low PA (Hrsg) Clinical
autonomic disorders Minnesota: Little, Brown & Co 1993: 209-215
- 138
Tiecks F P, Lam A M, Matta B F, Strebel S, Douville C, Newell D W.
Effects of the Valsalva maneuver on cerebral circulation in healthy adults.
Stroke.
1995;
26
1386-1392
- 139
Hilz M J, Steingrueber M, Hagler A, Axelrod F B.
Valsalva Maneuvre demonstrates impaired cerebrovascular autoregulation in familial
dysautonomia patients.
Clin Auton Res.
1999;
9
37
- 140
Greenfield Jr J C, Rembert J C, Tindall G T.
Transient changes in cerebral vascular resistance during the Valsalva maneuver in
man.
Stroke.
1984;
15
76-79
- 141
Nichols J S, Beel J A, Munro L G.
Detection of impaired cerebral autoregulation using spectral analysis of intracranial
pressure waves.
J Neurotrauma.
1996;
13
439-456
- 142
Birch A A, Dirnhuber M J, Hartley-Davies R, Iannotti F, Neil-Dwyer G.
Assessment of autoregulation by means of periodic changes in blood pressure.
Stroke.
1995;
26
834-837
- 143
Diehl R R, Linden D, Luecke D, Berlit P.
Spontaneous blood pressure oscillations and cerebral autoregulation.
Clin Auton Res.
1998;
8
7-12
- 144
Müller H, Casty M, Moll R, Zehnder R.
Response of middle cerebral artery volume flow to orthostatis.
Cerebrovasc Dis.
1991;
1
82-89
- 145
Thomsen L L, Klingenberg-Iversen H, Boesen F, Olesen J.
Transcranial Doppler and cardiovascular responses during cardiovascular autonomic
tests in migraineurs during and outside attacks.
Brain.
1995;
118
1319-1327
- 146
Huber P, Handa J.
Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and
papaverine on the diameter of the cerebral arteries. Angiographic determination in
man.
Invest Radiol.
1967;
2
17-32
- 147
Levine B D, Giller C A, Lane L D, Buckey J C, Blomqvist C G.
Cerebral versus systemic hemodynamics during graded orthostatic stress in humans.
Circulation.
1994;
90
298-306
- 148
Mueller S M, Heistad D D, Marcus M L.
Total and regional cerebral blood flow during hypotension, hypertension, and hypocapnia.
Effect of sympathetic denervation in dogs.
Circ Res.
1977;
41
350-356
- 149
Lindegaard K F, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H.
Variations in middle cerebral artery blood flow investigated with noninvasive transcranial
blood velocity measurements.
Stroke.
1987;
18
1025-1030
- 150
Harper A M, Deshmukh V D, Rowan J O, Jennett W B.
The influence of sympathetic nervous activity on cerebral blood flow.
Arch Neurol.
1972;
27
1-6
- 151
DuBoulay G H, Symon L.
The anesthesist effect upon the cerebral artery.
Pro R Soc Med.
1971;
64
77-80
- 152
Newell D W, Aaslid R, Lam A, Mayberg T S, Winn H R.
Comparison of flow and velocity during dynamic autoregulation testing in humans.
Stroke.
1994;
25
793-797
- 153
Nornes H, Sorteberg W, Nakstad P, Bakke S J, Aaslid R, Lindegaard K F.
Haemodynamic aspects of clinical cerebral angiography. Concurrent two vessel monitoring
using transcranial Doppler ultrasound.
Acta Neurochir.
1990;
105
89-97
- 154
Aaslid R.
Visually evoked dynamic blood flow response of the human cerebral circulation.
Stroke.
1987;
18
771-775
- 155
Arts M G, Roevros J M.
On the instantaneous measurement of bloodflow by ultrasonic means.
Med Biol Eng.
1972;
10
23-34
- 156
Heistad D D, Marcus M L, Abboud F M.
Role of large arteries in regulation of cerebral blood flow in dogs.
J Clin Invest.
1978;
62
761-768
- 157
Levy L L, Wallace J D, Stolwijk J A, Poindexter E R.
Cerebral blood flow regulation: vascular resistance adjustments in the circle of Willis.
Stroke.
1976;
7
147-150
- 158
Levy L L, Wallace J D.
Cerebral blood flow regulation. II. Vasodilator mechanisms.
Stroke.
1977;
8
189-193
- 159
Tuor U I, Farrar J K.
Contribution of the inflow arteries to alterations in total cerebrovascular resistance
in the rabbit.
Pflugers Arch.
1985;
403
283-288
- 160
Kontos H A, Wei E P, Navari R M, Levasseur J E, Rosenblum W I, Patterson J L.
Responses of cerebral arteries and arterioles to acute hypotension and hypertension.
Am J Physiol.
1978;
234
H371-H383
- 161
Baumbach G, Heistad D.
Effects of sympathetic stimulation and changes in arterial pressure on segmental resistance
of cerebral vessels in rabbits and cats.
Circ Res.
1983;
52
527-533
- 162
Stromberg D, Fox J.
Pressures in the pial arterial microcirculation of the cat during changes in systemic
arterial blood pressure.
Circ Res.
1972;
31
229-239
- 163
Berne R M, Winn H R, Rubio R.
The local regulation of cerebral blood flow.
Prog Cardiovasc Dis.
1981;
24
243-260
Prof. Dr. Max J. Hilz
Neurologische Klinik mit Poliklinik der
Universität Erlangen-Nürnberg
Schwabachanlage 6
91054 Erlangen
Email: E-mail: max.hilz@neuro.med.uni-erlangen.de