Int J Sports Med 2000; 21(7): 524-528
DOI: 10.1055/s-2000-7410
Orthopedics and Clinical Science
Georg Thieme Verlag Stuttgart · New York

Bone Mineral Density and Muscle Strength in Female Ice Hockey Players

P. Sandström1,2 , P. Jonsson1 , R. Lorentzon1,2 , K. Thorsen1,2
  • 1 Sports Medicine, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
  • 2 Centre for Musculoskeletal Research, National Institute for Working Life, Umeå, Sweden
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The purpose of this study was to investigate bone mineral density (BMD) at different sites in female ice hockey players as well as to study the relationship between BMD, muscle strength, and body composition parameters. The study group consisted of 14 female ice hockey players (age 22.2 ± 4.3 years) which was compared with 14 inactive females (age 21.5 ± 3.8 years). The two groups were matched for age and weight. Areal bone mineral density was measured in total body, head, lumbar spine, femoral neck, Ward's triangle and the trochanter, using dual energy X-ray absorptiometry. Body composition parameters were derived from the total body scan. Isokinetic concentric peak torque of the left quadriceps and hamstrings muscles was measured using an isokinetic dynamometer. Compared to the inactive group, the ice hockey players had significantly higher BMD of all of the bone sites measured, except for the head, (total body 6.9 %, head - 2.6 %, lumbar spine 8.9 %, femoral neck 17.6 %, Ward's triangle 20.4 %, and trochanter 21.7 %). The hockey players also had significantly higher peak torque in the quadriceps and hamstrings muscles. In the ice hockey group, a significant positive correlation was found between BMD of the femoral neck and hamstrings peak torque at 225 degrees/second (r = 0.67, P < 0.01). In the inactive group, significant positive correlations were found between BMD and peak torque in the hamstrings muscles (90 degrees/second: r = 0.6 - 0.8, P < 0.05 (total body, trochanter) and P < 0.01 (spine, neck), 225 degrees/second: r = 0.5 - 0.8, P < 0.05 (total body, Ward's triangle, trochanter) and P < 0,01 (spine, neck)). In the inactive group significant positive correlations was also found between lean body mass and BMD of the trochanter (r = 0.58, P < 0.05). In young females it appears that training and playing ice hockey might influence BMD and muscle strength in a positive direction. The correlation between BMD and muscle strength seems to weaken with increased exercise level.

References

  • 1 Alfredson H, Nordström P, Lorentzon R. Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and non-active females.  Calcif Tissue Int. 1997;  60 338-342
  • 2 Alfredson H, Nordström P, Lorentzon R. Total and regional bone mass in female soccer players.  Calcif Tissue Int. 1996;  59 438-442
  • 3 Arden N K, Spector T D. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study.  J Bone Miner Res. 1997;  12 2076-2081
  • 4 Bassey E J, Ramsdale S J. Increase in femoral bone density in young women following high impact exercise.  Osteoporosis Int. 1994;  4 72-75
  • 5 Bennell K L, Malcolm S A, Kahn K M, Thomas S A, Reid S J, Brukner P D, Ebeling P R, Wark J D. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study.  Bone. 1997;  20 477-484
  • 6 Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D. Childhood growth, physical activity, and peak bone mass in women.  J Bone Miner Res. 1995;  10 940-947
  • 7 Etherington J, Harris P A, Nandra D, Hart D J, Wolman R L, Doyle D V, Spector T D. The effect of weight-bearing exercise on bone mineral density: a study of female ex-elite athletes and the general population.   J Bone Miner Res. 1996;  11 1333-1338
  • 8 Fehling P C, Alekel L, Clasey J, Rector A, Stillman R J. A comparison of bone mineral densities among female athletes in impact loading and active loading sports.  Bone. 1995;  17 205-210
  • 9 Grimston S K, Willows N D, Hanley D A. Mechanical loading regime and its relationship to bone mineral density in children.  Med Sci Sports Exerc. 1993;  25 1203-1210
  • 10 Gutin B, Kasper M J. Can vigorous exercise play a role in osteoporosis prevention? A review.  Osteoporosis Int. 1992;  2 55-69
  • 11 Heinonen A, Oja P, Kannus P, Sievänen H, Haapsalo H, Mänttäri A, Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton.  Bone. 1995;  17 197-203
  • 12 Hui S L, Slemenda C W, Johnston C C. The contribution of bone loss to postmenopausal osteoporosis.  Osteoporosis Int. 1990;  1 30-34
  • 13 Joakimsen R M, Magnus J H, Fonnebo V. Physical activity and predisposition for hip fractures: a review.  Osteoporos Int. 1997;  7 503-513
  • 14 Johansson C, Lorentzon R, Fugl-Meyer A R. Isokinetic muscular performance of the quadriceps in elite ice hockey players.  Am J Sports Med. 1989;  17 30-33
  • 15 Madsen O R, Lauridsen U B, Hartkopp A, Sorensen O H. Muscle strength and soft tissue composition as measured by dual energy X-ray absorptiometry in women aged 18 - 87 years.  Eur J Appl Physiol. 1997;  75 239-245
  • 16 Madsen O R, Schaadt O, Bliddal H, Egsmose C, Sylvest J. Relationship between quadriceps strength and bone mineral density of the proximal tibia and distal forearm in women.  J Bone Miner Res. 1993;  8 1439-1444
  • 17 Nichols D L, Sanborn C F, Bonnick S L, Gench B, Dimarco N. Relationship of regional body composition to bone mineral density in college females.  Med Sci Sports Exerc. 1995;  27 178-182
  • 18 Nordström P, Nordström G, Lorentzon R. Correlation of bone density to strength and physical activity in young men with a low or moderate level of physical activity.  Calcif Tissue Int. 1997;  60 332-337
  • 19 Nordström P, Thorsen K, Bergström E, Lorentzon R. High bone mass and altered relationships between bone mass, muscle strength, and body constitution in adolescent boys and a high level of physical activity.  Bone. 1996;  19 189-195
  • 20 Orwoll E S, Oviatt S K, Biddle J A. Prevision of dual-energy x-ray absorptiometry: development of quality control rules and their application in longitudinal studies.  J Bone Miner Res. 1993;  8 693-699
  • 21 Pincivero D M, Lephart S M, Karunakara R A. Reliability and precision of isokinetic strength and muscular endurance for the Quadriceps and Hamstrings.  Int J Sports Med. 1997;  18 113-117
  • 22 Pocock N, Eisman J, Gwinn T, Sambrook P, Kelly P, Freund J, Yeates M. Muscle strength, physical fitness, and weight but not age predict femoral neck bone mass.  J Bone Miner Res. 1989;  4 441-448
  • 23 Robinson T L, Snow-Harter C, Taafee D R, Gillis D, Shaw J, Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea.  J Bone Miner Res. 1995;  10 26-35
  • 24 Sievänen H, Oja P, Vuori I. Precision of dual-energy x-ray absorptiometry in determining bone mineral content of various skeletal sites.  J Nucl Med. 1992;  33 1137-1142
  • 25 Turner C H. Three rules for bone adaption to mechanical stimuli.  Bone. 1998;  23 399-407
  • 26 Welten D C, Kemper H CG, Post G B, Van Mechelen W, Twisk J, Lips P, Teule G J. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake.  J Bone Miner Res. 1994;  9 1089-1096
  • 27 Wu J, Ishizaki S, Kato S, Kuroda Y, Fukashiro S. The side to side differences of bone mass at proximal femur in female rhythmic sports gymnasts.  J Bone Miner Res. 1998;  13 900-906
  • 28 Young D, Hopper J L, Nowson C A, Green R M, Sherwin A J, Kaymakci B, Smid M, Guest C S, Larkins R G, Wark J D. Determinants of bone mass in 10- to 26-year-old females: a twin study.  J Bone Miner Res. 1995;  10 558-567

Kim Thorsen,MD, Ph.D. 

Sports Medicine Department of Surgical and Perioperative Sciences Umeå University

S-901 87 Umeå Sweden

Phone: Phone:+ 46 (90) 7853998

Fax: Fax:+ 46 (90) 135692

Email: E-mail:kim.thorsen@idrott.umu.se

    >