Zusammenfassung
Seit vielen Jahren wird diskutiert, ob und unter welchen Bedingungen fluoridinduzierter
Knochen eine ausreichende Stabilität hat. Nicht umstritten ist die einmalige Selektivität,
mit der Fluoridionen die Proliferation und Matrixsynthese des Osteoblasten stimulieren.
Gleichzeitig wird jedoch Fluorid in den neuen Knochen abgelagert und führt durch Störung
der Kristallstruktur zur Beeinträchtigung der mechanischen Kompetenz, wenn eine bestimmte
toxische Schwelle überschritten wird. Zudem verzögert Fluorid die Mineralisation und
kann bei zu hoher Dosierung osteomalazieartige Veränderungen auslösen, die durch Kalziummangel
noch verstärkt werden. Es hat sich herausgestellt, dass der günstige osteoblastenstimulierende
Effekt in einem engen Konzentrationsbereich von ca. 5 - 10 µmol zu erwarten ist, während
der ungünstige Fluorideinbau in den Knochen linear mit der Konzentration ansteigt.
Um die ungünstigen postresorptiven Konzentrationsspitzen zu vermeiden, werden heute
dünndarmlösliche retardierte Präparationen von NaF und Na2FPO4 bevorzugt, die auch weniger gastrointestinale Beschwerden verursachen. Eine weitere
Therapiemodalität, an der heute experimentiert wird, ist die intermittierende Fluoridtherapie.
Kontrollierte klinische Studien der letzten 10 Jahre zeigten inkonsistente Ergebnisse.
Trotz eindrucksvoller Knochendichtezunahme konnten mehrere Studien keinen signifikanten
Effekt auf die Wirbelkörperfrakturrate nachweisen. Einige kontrollierte Studien konnten
jedoch mit niedriger Fluoriddosierung mittels retardierter Präparate, intermittierender
zyklischer Fluoridapplikation und ausreichender Kalziumsubstitution zum Teil eindrucksvolle
Senkungen der Wirbelkörperfrakturrate bei Frauen mit postmenopausaler Osteoporose
erzielen. Da bis heute jedoch viele Einzelheiten der Fluoridtherapie nicht endgültig
geklärt sind und kein allgemein verbindliches, durch kontrollierte Studien abgesichertes
Therapieschema zur Verfügung steht, kann diese Therapieform nicht für die allgemeine
Praxis empfohlen werden. Fluorid ist weiterhin eine experimentelle Substanz, mit der
es sich allerdings lohnen würde, systematische klinische Therapiestudien durchzuführen.
Therapy of Osteoporosis with Fluoride
Controversy continues whether as to and under which conditions fluoride-induced bone
is sufficiently stable. The unique selectivity of fluoride ions to induce osteoblast
proliferation and matrix synthesis is unquestioned; however, fluoride is accumulated
in the newly formed bone in depending on the concentration and, when exceeding a toxic
level, deteriorates the mechanical strength by changing the bone crystal structure.
In addition, fluorides delay the mineralisation time and, if used above the toxic
threshold, induce osteomalacia-like changes which are even worse when calcium deficiency
develops. The favourable osteoblast-stimulating effect can be expected in a narrow
therapeutic window between 5 and 10 µmol fluoride while the toxic accumulation in
bone increases in linear proposition with the fluoride serum concentration. Hence,
sustained-release or retarded sodium fluoride preparations are now preferred which
are mainly absorbed in the small bowel and produce fewer gastrointestinal side effects.
Another experimental treatment approach used recently is the intermittent application
of fluoride. Controlled clinical studies during the last ten years show inconsistent
results. Although bone density increased substantially, some controlled studies could
not detect a significant effect on the spinal fracture rate. Other studies, however,
using low-dose and slow-release preparations or in connection with intermittent, cyclical
application with sufficient additional calcium, demonstrated an impressive decrease
of the spinal fracture rate in postmenopausal women. In conclusion, several important
details of fluoride therapy are still unclear and no standardised therapeutic scheme
has been developed so far. Therefore, fluoride does not meet the criteria of evidence-based
medicine and continues to be an experimental drug which cannot be recommended for
general practice.
Literatur
- 1
Ettinger B, Black D M, Mitlak B H, Knickerbocker R K, Nickelsen T, Genant H K, Christiansen C,
Delmas P D, Zanchetta J R, Stakkestad J, Gluer C C, Krueger K, Cohen F J, Eckert S,
Ensrud K E, Avioli L V, Lips P, Cummings S R.
Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated
with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes
of Raloxifene Evaluation (MORE) Investigators [see comments] [published erratum appears
in JAMA 1999 Dec 8;282(22):2124].
Jama.
1999;
282
637-645
- 2
Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K.
Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle
x-ray-scattering study.
J Bone Miner Res.
1994;
9
1541-1549
- 3
Kleerekoper M, Peterson E L, Nelson D A, Phillips E, Schork M A, Tilley B C, Parfitt A M.
A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis.
Osteoporos Int.
1991;
1
155-161
- 4
Lau K HW, Baylink D J.
Pros and cons of fluoride therapy.
Osteologie.
1998;
7
157-163
- 5
Liberman U A, Weiss S R, Broll J, Minne H W, Quan H, Bell N H, Rodriguez P J, Downs R J,
Dequeker J, Favus M.
Effect of oral alendronate on bone mineral density and the incidence of fractures
in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study
Group.
N Engl J Med.
1995;
333
1437-1443
- 6
Meunier P J, Sebert J L, Reginster J Y, Briancon D, Appelboom T, Netter P, Loeb G,
Rouillon A, Barry S, Evreux J C, Avouac B, Marchandise X.
Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin
D in postmenopausal osteoporosis: the FAVOStudy.
Osteoporos Int.
1998;
8
4-12
- 7
Pak C Y, Sakhaee K, Adams H B, Piziak V, Peterson R D, Poindexter J R.
Treatment of postmenopausal osteoporosis with slow-release sodium fluoride. Final
report of a randomized controlled trial.
Ann Intern Med.
1995;
123
401-408
- 8
Pak C Y, Sakhaee K, Rubin C D, Zerwekh J E.
Sustained-release sodium fluoride in the management of established postmenopausal
osteoporosis.
Am J Med Sci.
1997;
313
23-32
- 9
Pak C YC, Zerwekh J E.
Sustained-release sodium fluoride in the management of osteoporosis.
Osteologie.
1998;
7
144-150
- 10
Reginster J, Minne H W, Sorensen O H, Hooper M, Roux C, Brandi M L, Lund B, Ethgen D,
Pack S, Roumagnac I, Eastell R.
Randomized trial of the effects of risedronate on vertebral fractures in women with
established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy
(VERT) Study Group.
Osteoporos Int.
2000;
11
83-91
- 11
Reginster J Y, Meurmans L, Zegels B, Rovati L C, Minne H W, Giacovelli G, Taquet A N,
Setnikar I, Collette J, Gosset C.
The effect of sodium monofluorophosphate plus calcium on vertebral fracture rate in
postmenopausal women with moderate osteoporosis. A randomized, controlled trial.
Ann Intern Med.
1998;
129
1-8
- 12
Riggs B L, Hodgson S F, O'Fallon W M, Chao E Y, Wahner H W, Muhs J M, Cedel S L, Melton L.
Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis.
N Engl J Med.
1990;
322
802-809
- 13
Riggs B L, O'Fallon W M, Lane A, Hodgson S F, Wahner H W, Muhs J, Chao E, Melton L.
Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended
observations and additional analysis.
J Bone Miner Res.
1994;
9
265-275
- 14
Ringe J D, Dorst A, Kipshoven C, Rovati L C, Setnikar I.
Avoidance of vertebral fractures in men with idiopathic osteoporosis by a three year
therapy with calcium and low-dose intermittent monofluorophosphate.
Osteoporos Int.
1998;
8
47-52
- 15
Ringe J D, Kipshoven C, Coster A, Umbach R.
Therapy of established postmenopausal osteoporosis with monofluorophosphate plus calcium:
dose-related effects on bone density and fracture rate.
Osteoporos Int.
1999;
9
171-178
- 16
Schnitzler C M, Wing J R, Raal F J, van der Merwe M T, Mesquita J M, Gear K A, Robson H J,
Shires R.
Fewer bone histomorphometric abnormalities with intermittent than with continuous
slow-release sodium fluoride therapy.
Osteoporos Int.
1997;
7
376-389
- 17
Sogaard C H, Mosekilde L, Richards A, Mosekilde L.
Marked decrease in trabecular bone quality after five years of sodium fluoride therapy
- assessed by biomechanical testing of iliac crest bone biopsies in osteoporotic patients.
Bone.
1994;
15
393-399
- 18
Sogaard C H, Mosekilde L, Schwartz W, Leidig G, Minne H W, Ziegler R.
Effects of fluoride on rat vertebral body biomechanical competence and bone mass.
Bone.
1995;
16
163-169
- 19
Taves D R.
New approach to the treatment of bone disease with fluoride.
Fed Proc.
1970;
29
1185-1187
- 20
Trautner K.
Influence of food on relative bioavailability of fluoride in man from Na2FPO3-containing
tablets for the treatment of osteoporosis.
Int J Clin Pharmacol Ther Toxicol.
1989;
27
242-249
- 21
Turner C H, Boivin G, Meunier P J.
A mathematical model for fluoride uptake by the skeleton.
Calcif Tissue Int.
1993;
52
130-138
- 22
Wergedal J E, Lau K H, Baylink D J.
Fluoride and bovine bone extract influence cell proliferation and phosphatase activities
in human bone cell cultures.
Clin Orthop.
1988;
233
274-282
- 23
Wu L W, Yoon H K, Baylink D J, Graves L M, Lau K H.
Fluoride at mitogenic doses induces a sustained activation of p44mapk, but not p42mapk,
in human TE85 osteosarcoma cells.
J Clin Endocrinol Metab.
1997;
82
1126-1135
Prof. Dr. M. Hüfner
Schwerpunkt Endokrinologie
Abt. für Gastroenterologie und Endokrinologie
Universitätsklinikum Göttingen
Robert-Koch-Straße 40
37075 Göttingen
Email: mhuefner@med.uni-goettingen.de