Zusammenfassung
Die Hyponatriämie stellt die häufigste Elektrolytstörung im klinischen Alltag dar
und ist auf Störungen der Osmoregulation zurückzuführen. Die Hyponatriämie weist somit
auf einen relativen Wasserüberschuss hin. Die Plasmaosmolalität unterliegt einer präzisen
Regulierung, die über ADH, den Durst, die Flüssigkeitszufuhr und die renale Wasserausscheidung
gewährleistet wird. Störungen der physiologischen Osmoregulation gehen daher im Prinzip
immer auf eine Veränderung der ADH-Sekretion, des Durstmechanismus, der adäquaten
Flüssigkeitszufuhr oder der renalen Wasserausscheidung zurück. Dabei ist die ADH-gesteuerte
renale Wasserausscheidung meist das für die Hyponatriämie entscheidende Regelglied.
Die pathologisch vermehrte ADH-Sekretion wird im klinischen Alltag vor allem bei Patienten
mit fortgeschrittener Herz- oder Leberinsuffizienz beobachtet sowie bei paraneoplastischen
Syndromen. In der erstgenannten Gruppe (Herz- und Leberinsuffizienz) ist das Signal
für die gesteigerte ADH-Sekretion barorezeptorvermittelt und entsprechend fallen diese
Patienten durch eher erhöhte Plasmakonzentrationen von Harnstoff und Kreatinin auf.
Bei paraneoplastischem Syndrom besteht hingegen eine ungeregelte ADH-Sekretion aus
Tumorzellen (z. B. kleinzelliges Bronchialkarzinom). Es liegen keine Kreislaufveränderungen
zugrunde. Dementsprechend ist diese Form der Hyponatriämie an auffallend niedrigen
Plasmakonzentrationen von Harnstoff, Kreatinin und Harnsäure, die sogar innerhalb
des Normbereiches liegen können, zu erkennen. Die Symptomatik der Hyponatriämie wird
im Wesentlichen von der Geschwindigkeit mit der sie sich entwickelt bestimmt (schneller
Eintritt der Störung → verstärkte Symptome). Im Vordergrund stehen dabei zerebrale
Symptome. In der Therapie der Hyponatriämie, bringt die Entwicklung der V2-Vasopressin-Rezeptorantagonisten
neue spezifische und viel versprechende Behandlungsmöglichkeiten mit sich.
Abstract
Hyponatraemia is the most frequent electrolyte disturbance in clinical practice. Hyponatraemia
is a disorder of the regulation of plasma osmolality and therefore represents an excess
of body water. Under physiological circumstances plasma osmolality is regulated by
ADH, thirst and renal water excretion. Therefore in hyponatraemia vasopressin, thirst
and/or renal water excretion will have to be dysregulated to bring about the hypoosmolality.
In clinical practice hyponatraemia is encountered in the advanced stages of congestive
heart failure (CHF), liver cirrhosis, and volume contraction as well as in the syndrome
of inappropriated antidiuretic hormone secretion (SIADH). In these disorders hyponatraemia
is caused by nonosmotic vasopressin and sustained fluid intake. Two types of hyponatraemia
are differentiated: a.) so-called nonosmotic related hyponatraemia (CHF, liver cirrhosis,
volume contraction) and b.) the SIADH-type hyponatraemia. The low arterial blood pressure
typically present in CHF, liver cirrhosis and volume contraction provides the stimulus
to baroreceptor activation, resulting in an increased vasopressin secretion. In SIADH-type
hyponatraemia the stimuli of nonosmotic vasopressin release are not precisely known.
These may originate either from tumour cells or from the hypothalamus. Hyponatraemic
patients may suffer from lethargy, difficulty to concentrate, disorientation muscular
cramps, grand mal seizures, and even coma. It is important to know that these symptoms
are mainly related to the rate of decrease of serum sodium concentration (rapid electrolyte
disturbance → symptoms). During the last few years pharmaceutical research has uncovered
novel agents that are effective oral V2 vasopressin receptor antagonists. Recently
these agents have yielded promising results in the treatment of experimental and clinical
hyponatraemia.
Literatur
- 1
Gross P, Ketteler M, Hausmann C, Reinhard C, Schömig A, Hackenthal E.
Role of diuretics, hormonal derangements, and clinical setting of hyponatremia in
medical patients.
Klin Wochenschr.
1988;
66
662-669
- 2
Arieff A I.
Neurological manifestations and morbidity of hyponatremia: correlation with brain
water and electrolytes.
Medicine.
1976;
55
121-129
- 3
Berl T.
Treating hyponatremia: damned if we do and damned if we don't.
Kidney International.
1990;
37
1006-1018
- 4
Xu D L, Martin P Y, Ohara M, St John J, Pattison T, Meng X.
Upregulation of aquaporin-2 water channel expression in congestive heart failure rat.
J Clin Invest.
1997;
99
1500-1505
- 5
Nishikimi T, Kawano Y, Saito Y, Matsuoka H.
Effect of long-term treatment with selective vasopressin V1 and V2 receptor antagonist
on the development of heart failure in rats.
J Cardiovasc Pharmacol.
1996;
27
275-282
- 6
Bichet D G, Szatalowicz V, Chaimovitz C, Schrier R W.
Role of vasopressin in abnormal water excretion in cirrhotic patients.
Ann Int Med.
1982;
96
413-417
- 7
Tsuboi Y, Ishikawa S, Fujisawa G, Okada K, Saito T.
Therapeutic efficacy of the non-peptide AVP antagonist OPC-31260 in cirrhotic rats.
Kidney Int.
1994;
46
237-244
- 8
Gross P, Reimann D, Neidel J, Döke C, Prospert F, Decaux G.
The treatment of severe hyponatremia.
Kidney Int.
1998;
53 (Suppl 64)
6-11
- 9
Gross P, Anderson R.
Effects of DDAVP and AVP on sodium and water balance in conscious rat.
Am J Physiolog.
1982;
243
R512-519
- 10
Melton J E, Nattie E E.
Brain and CSF water and ions during dilutional and isoosmotic hyponatremia in the
rat.
Am J Physiol.
1983;
244
R724-737
- 11
Verbalis J G, Gullans S R.
Hyponatremia causes large sustained reductions in brain content of multiple organic
osmolytes in rats.
Brain Res.
1991;
567
274-282
- 12
Paredes A, McManus M, Kwon M H, Strange K.
Osmoregulation of Na-inositol cotransporter acitvity and mRNA levels in brain glialcells.
Am J Physiol.
1992;
263
C1282-1288
- 13
Cluitmans F HM, Arend E M, Meinders M D.
Management of severe hyponatremia: rapid or slow correction?.
Amer J Med.
1990;
88
161-166
- 14
Ayus J C, Krothapalli R K, Arieff A I.
Treatment of symptomatic hyponatremia and its relation to brain damage. A prospective
study.
New Engl J Med.
1987;
317
1190-1195
- 15
Verbalis J G, Gullans S R.
Rapid correction of hyponatremia produces differential effects on brain osmolyte and
electrolyte reaccumulation in rats.
Brain Res.
1993;
606
19-27
- 16
Ayus J C, Krothapalli R K, Arieff A I.
Changing concepts in treatment of severe symptomatic hyponatremia: rapid correction
and possible relation to central pontine myelinolysis.
Am J Med.
1985;
78
897-901
- 17
Sterns R H, Riggs J E, Schochet S S.
Osmotic demyelination syndrome following correction of hyponatremia.
N Engl J Med.
1986;
314
1535-1542
- 18
Laureno R, Illowsky B.
Myelinolysis after correction of hyponatremia.
Ann Int Med.
1997;
126
57-62
- 19 Verbalis J G, Adler S, Hoffman G E, Martinez J A.
Brain adaption to hyponatremia: Physiological mechanisms and clinical implications. In: Saito T, Kurokawa K, Yoshida S (eds) Neurohypophysis: Recent Progress of Vasopressin
and Oxytocin Research. Amsterdam; Elsevier Science B.V. 1995: 615-626
- 20
Soupart A, Decaux G.
Therapeutic recommandations for management of severe hyponatremia: current concepts
on pathogenesis and prevention of neurologic complications.
Clinical Nephrology.
1996;
46
149-169
- 21
Hantman D, Rossier B, Zohlman R, Schrier R W.
Rapid correction of hyponatremia in the syndrome of inappropriate secretion of antidiuretic
hormone: An alternative treatment to hypertonic saline.
Ann Int Med.
1973;
78
870
- 22
Saito T, Ishikawa S, Abe K, Kamoi K, Yamada K, Shimizu K. et al .
Acute aquaresis by the nonpeptide arginine vasopressin (AVP) antagonist OPC-31260
improves hyponatremia in patients with syndrome of inappropriate secretion of antidiuretic
hormon (SIADH).
J Clin Endocrinol Metab.
1997;
82
1054-1057
- 23
Kuhn K, Reimann D, Gross P.
Benefical effects of V2-vasopressin antagonist (ANTAG) in the hyponatremia of clinical
cardiac failure (CHF), SIADH and liver cirrhosis (CI) (Abstract).
Kidney & Blood Pressure Research.
1998;
21 (2 - 4)
183
- 24
Inoue T, Ohnishi A, Matsuo A, Kawai B, Kunihiro N, Tada Y. et al .
Therapeutic and diagnostic potential of a vasopressin-2 antagonist for impaired water
handling in cirrhosis.
Clin Pharmacol Ther.
1998;
5
561-570
- 25 Abraham W T, Oren R M, Schrier R W. Effects of an oral nonpeptide, selective V2
receptor vasopressin antagonist in human heart failure. Abstract (183). Montreal,
Canada; World Congress of Neurohypophysial Hormones August 8. - 12. 1997
- 26
Gerbes A L, Guelberg V, Decaux G, Gross P, Massien C.
VPA 985, an orally active vasopressin receptor antagonist improves hyponatremia in
patients with cirrhosis - a double blind placebo controlled multicenter trial (Abstract).
Hepatology.
1999;
30
Pt. 2
- 27
Naitoh M, Suzuki H, Murakami M. et al .
Effect of oral AVP receptor antagonists OPC 21268 and OPC-31260 on congestive heart
failure in conscious dogs.
Am J Physiol.
1994;
267
H 2245-2254
- 28
Okada K, Ishikawa S, Caramelo C, Tsai P, Schrier R W.
Enhancement of vascular action of arginine vasopressin by diminishing extracellular
sodium concentration.
Kidney Int.
1993;
44
755-763
- 29
Lang F, Busch G L, Ritter M. et al .
Functional significance of cell volume regulatory mechanisms.
Physiol Rev.
1998;
87
247-306
- 30
Serradeil-Le Gal C, Lacour C, Valette G. et al .
Characterization of SR 121463 A, a highly potent selective, orally active vasopressin
V2-receptor antagonist.
J Clin Invest.
1996;
98
2729-2738
- 31 Coupet J, Mazandarani H, Albright J D, Dusza J P. Characterization of VPA 985 as
a specific, nonpeptide vasopressin V2 antagonist. Abstract (181). Montreal, Canada;
World Congress of Neurophysial Hormones 8. - 12. August 1997
- 32
Yamamura Y, Nakamura S, Itoh S, Hirano T. et al .
OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological
profile and aquaretic effect by single and multiple oral dosing in rats.
The Journal of Pharmacology and Experimental Therapeutics.
1998;
287
860-867
- 33
Naito A, Ohtake Y, Hasegawa H, Fukaya Y. et al .
Pharmacological profile of VPA-343, a novel selective vasopressin V2 receptor antagonist,
in rats.
Biol Pharm Bull.
2000;
23
182-189
Dr. med. Catrin Palm
Abteilung für Nephrologie · III. Med. Klinik · Universitätsklinik „Carl Gustav Carus”
Fetscherstraße 74
01307 Dresden