TumorDiagnostik & Therapie 2002; 23(3): 97-103
DOI: 10.1055/s-2002-32655
Übersicht/Review
© Georg Thieme Verlag Stuttgart · New York

Das Hitzeschockprotein 90 als Ziel der
pharmakologischen Tumortherapie
mit Benzochinon-Ansamycinen

Heat Shock Protein 90 as a Target of Pharmacological Tumor Therapy with
Benzoquinone-ansamycins
H.-J.  Ochel, G.  Gademann
  • 1Klinik für Strahlentherapie Medizinische Fakultät, Otto-von-Guericke Universität, Magdeburg
Further Information

Publication History

Publication Date:
04 July 2002 (online)

Zusammenfassung

Benzochinon-Ansamycine sind eine neuartige Gruppe von Antitumormedikamenten. Eine gut untersuchtes Beispiel ist Geldanamycin (NSC 122750). In verschiedenen präklinischen Modellen konnte für diese Substanzen in vitro und in vivo antineoplastische Aktivität gezeigt werden. Die Zielmoleküle der zytotoxisch wirksamen Vertreter dieser Gruppe sind Mitglieder der Hitzeschockprotein 90-Familie. Benzochinon-Ansamycine haben Einfluss auf eine Fülle verschiedenster regulatorischer Proteine, von denen einige, unter anderem mutiertes p53, ErbB2, Raf-1 und Fak von genereller onkologischer Bedeutung sind. Diese Proteine haben eine direkte, physische Interaktion mit dem Hitzeschockprotein 90 und werden dadurch in funktionsbereitem Status gehalten. Die Auflösung dieser Bindung führt zur raschen Destabilisierung der Klientenproteine und zum proteolytischen Abbau durch das Proteasom. Ein Benzochinon-Ansamycin mit günstigem Toxizitätsprofil, das 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507), ist zur Zeit in der klinischen Phase I Prüfung.

Abstract

Benzoquinone-ansamycins are a novel group of antitumor drugs. Geldanamycin (NSC 122750) is a well studied example. These compounds demonstrated antineoplastic activity in different preclinical in vitro and in vivo model systems. The target molecules of the cytotoxic agents from this group are the members of the heat shock protein 90-family. Benzoquinone-ansamycins affect a multitude of different regulatory proteins, some of which like mutant p53, ErbB2, Raf-1 and Fak are of general oncological significance. These proteins stand in direct physical interaction with heat shock protein 90 and thus are maintained in a functional state. The dissolution of this binding results in the rapid destabilization of the client proteins and in proteolytic degradation mediated by the proteasome. 17-(allylamino)-17 demethoxygeldanamycin (NSC 330507) is a benzoquinone-ansamycin with a favorable toxicity profile that currently undergoes clinical phase I testing.

Literatur

  • 1 DeBoer C, Meulman P A, Wnuk R J, Peterson D H. Geldanamycin, a new antibiotic.  J Antibiot (Tokyo). 1970;  23 442-447
  • 2 Rinehart K L, Shield L S. Chemistry of the ansamycin antibiotics. In: Herz W, Grisebach H, Kirby GW (eds.) Progress in the Chemistry of Organic Natural Products. New York, Springer 1976: 232-300
  • 3 Allen I W, Ritchie D A. Cloning and analysis of DNA sequences from Streptomyces hygroscopicus encoding geldanamycin biosynthesis.  Mol Gen Genet. 1994;  243 593-599
  • 4 Whitesell L, Mimnaugh E G, De Costa B, Myers C E, Neckers L M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation.  Proc Natl Acad Sci USA. 1994;  91 8324-8328
  • 5 Hickey E, Brandon S E, Smale G, Lloyd D, Weber L A. Sequence and regulation of a gene encoding a human 89-Kilodalton heat shock protein.  Mol Cell Biol. 1989;  9 2615-2626
  • 6 Rebbe N F, Ware J, Bertina R M, Modrich M, Stafford D W. Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family.  Gene. 1987;  53 235-245
  • 7 Little E, Ramakrishnan M, Roy B, Gazit G, Lee A S. The glucose-regulated proteins (GRP78 and GRP94): Functions, gene regulation, and applications.  Crit Rev Eukaryotic Gene Expr. 1994;  4 1-18
  • 8 Chen C F, Chen Y, Dai K, Chen P L, Riley D J, Lee W H. A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock.  Mol Cell Biol. 1996;  16 4691-4699
  • 9 Song H Y, Dunbar J D, Zhang Y X, Guo D, Donner D B. Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor.  J Biol Chem. 1995;  270 3574-3581
  • 10 Picard D, Khursheed B, Garabedian M J, Fortin M G, Lindquist S, Yamamoto K R. Reduced levels of hsp90 compromise steroid receptor action in vivo.  Nature. 1990;  348 166-168
  • 11 Nathan D F, Vos M H, Lindquist S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone.  Proc Natl Acad Sci USA. 1997;  94 12949-12956
  • 12 Bose S, Weikl T, Bügl H, Buchner J. Chaperone function of hsp90-associated proteins.  Science. 1996;  274 1715-1717
  • 13 Hartson S D, Barrett D J, Burn P, Matts R L. Hsp90-mediated folding of the lymphoid cell kinase p56lck.  Biochemistry. 1996;  35 13451-13459
  • 14 Rutherford S L, Lindquist S. Hsp90 as a capacitor for morphological evolution.  Nature. 1998;  396 336-342
  • 15 Lindquist S. The heat-shock proteins.  Annu Rev Genet. 1988;  22 631-677
  • 16 Sullivan W P, Toft D O. Mutational analysis of hsp90 binding to the progesterone receptor.  J Biol Chem. 1993;  268 20373-20379
  • 17 Johnson J L, Toft D O. Binding of p23 and hsp90 during assembly with the progesterone receptor.  Mol Endocrinol. 1995;  9 670-678
  • 18 Whitesell L, Cook P. Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells.  Mol Endocrinol. 1996;  10 705-712
  • 19 Yano M, Naito Z, Tanaka S, Asano G. Expression and roles of heat shock proteins in human breast cancer.  Jpn J Cancer Res. 1996;  87 908-915
  • 20 Mileo A M, Fanuele M, Battaglia F, Scambia G, Benedetti-Panici P, Mancuso S, Ferrini U. Selective over-expression of mRNA coding for 90 kDa stress-protein in human ovarian cancer.  Anticancer Res. 1990;  10 903-906
  • 21 An W G, Schnur R C, Neckers L, Blagosklonny M V. Depletion of p185erbB2, raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity.  Cancer Chemother Pharmacol. 1997;  40 60-64
  • 22 Gan Y, Au J L, Lu J, Wientjes M G. Antiproliferative and cytotoxic effects of geldanamycin, cytochalasin E, suramin and thiacetazone in human prostate xenograft tumor histocultures.  Pharm Res. 1998;  15 1760-1766
  • 23 Sasaki K, Yasuda H, Onodera K. Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives.  J Antibiot (Tokyo). 1979;  32 849-851
  • 24 Uehara Y, Hori M, Takeuchi T, Umezawa H. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus.  Mol Cell Biol. 1986;  6 2198-2206
  • 25 Whitesell L, Shifrin S D, Schwab G, Neckers L M. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition.  Cancer Res. 1992;  52 1721-1728
  • 26 Supko J G, Hickman R L, Grever M R, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent.  Cancer Chemother Pharmacol. 1995;  36 305-315
  • 27 Benchekroun N M, Myers C E, Sinha B K. Free radical formation by ansamycin benzoquinone in human breast tumor cells: implications for cytotoxicity and resistance.  Free Radic Biol Med. 1994;  17 191-200
  • 28 Yamaki H, Nakajima M, Seimiya H, Saya H, Sugita M, Tsuruo T. Inhibition of the association with nuclear matrix of pRB, p70 and p40 proteins along with the specific suppression of c-myc expression by geldanamycin, an inhibitor of src tyrosine kinase.  J Antibiot (Tokyo). 1995;  48 1021-1026
  • 29 Uehara Y, Fukazawa H, Murakami Y, Mizuno S. Irreversible inhibition of v-src tyrosine kinase activity by herbimycin A and its abrogation by sulfhydryl compounds.  Biochem Biophys Res Com. 1989;  163 803-809
  • 30 Mimnaugh E G, Worland P J, Whitesell L, Neckers L M. Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase.  J Biol Chem. 1995;  270 28654-28659
  • 31 Grenert J P, Sullivan W P, Fadden P, Haystead T AJ, Clark J, Mimnaugh E, Krutzsch H, Ochel H J, Schulte T W, Sausville E, Neckers L M, Toft D O. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.  J Biol Chem. 1997;  272 23843-23850
  • 32 Prodromou C, Roe S M, O'Brien R, Ladbury J E, Piper P W, Pearl L H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone.  Cell. 1997;  90 65-75
  • 33 Stebbins C E, Russo A A, Schneider C, Rosen N, Hartl F U, Pavletich N P. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent.  Cell. 1997;  89 239-250
  • 34 Roe S M, Prodromou C, O'Brien R, Ladbury J E, Piper P W, Pearl L H. Structural basis for inhibition of the hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin.  J Med Chem. 1999;  42 260-266
  • 35 Obermann W M, Sondermann H, Russo A A, Pavletich N P, Hartl F U. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.  J Cell Biol. 1998;  143 901-910
  • 36 Young J C, Schneider C, Hartl F U. In vitro evidence that hsp90 contains two independent chaperone sites.  FEBS Lett. 1997;  418 139-143
  • 37 Scheibel T, Siegmund H I, Jaenicke R, Ganz P, Lilie H, Buchner J. The charged region of Hsp90 modulates the function of the N-terminal domain.  Proc Natl Acad Sci U S A. 1999;  96 1297-1302
  • 38 Chavany C, Mimnaugh E, Miller P, Bitton R, Nguyen P, Trepel J, Whitesell L, Schnur R, Moyer J, Neckers L. p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2.  J Biol Chem. 1996;  271 4974-4977
  • 39 Schulte T W, Akinaga S, Murakata T, Agatsuma T, Sugimoto S, Nakano H, Lee Y S, Simen B B, Argon Y, Felts S, Toft D O, Neckers L M, Sharma S V. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones.  Mol Endocrinol. 1999;  13 1435-1448
  • 40 Chen H S, Singh S S, Perdew G H. The Ah receptor is a sensitive target of geldanamycin-induced protein turnover.  Arch Biochem Biophys. 1997;  348 190-198
  • 41 Kim H R, Lee C H, Choi Y H, Kang H S, Kim H D. Geldanamycin induces cell cycle arrest in K562 erythroleukemic cells.  IUBMB Life. 1999;  48 425-428
  • 42 Busconi L, Guan J, Denker B M. Degradation of heterotrimeric Galpha(o) subunits via the proteasome pathway is induced by the hsp90-specific compound geldanamycin.  J Biol Chem. 2000;  275 1565-1569
  • 43 Holt S E, Aisner D L, Baur J, Tesmer V M, Dy M, Ouellette M, Trager J B, Morin G B, Toft D O, Shay J W, Wright W E, White M A. Functional requirement of p23 and Hsp90 in telomerase complexes.  Genes Dev. 1999;  13 817-826
  • 44 Sakagami M, Morrison P, Welch W J. Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases.  Cell Stress Chaperones. 1999;  4 19-28
  • 45 Blagosklonny M V, Fojo T, Bhalla K N, Kim J S, Trepel J B, Figg W D, Rivera Y, Neckers L M. The hsp90 inhibitor geldanamycin selectively sensitizes bcr-abl-expressing leukemia cells to cytotoxic chemotherapy.  Leukemia. 2001;  15 1537-1543
  • 46 Nimmanapali R, O'Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers bcr-abl levels and induces apoptosis and differentiation of bcr-abl-positive human leukemic blasts.  Cancer Res. 2001;  61 1799-1804
  • 47 Ochel H J, Schulte T W, Nguyen P, Trepel J, Neckers L. The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase.  Mol Genet Metab. 1999;  66 24-30
  • 48 Marx J. How p53 suppresses cell growth.  Science. 1993;  262 1644-1645
  • 49 Nigro J M, Baker S J, Preisinger A C, Jessup J M, Hostetter R, Cleary K, Bigner S H, Davidson N, Baylin S, Devilee P, Glover T, Collins F S, Weston A, Modali R, Harris C C, Vogelstein B. Mutations in the p53 gene occur in diverse human tumour types.  Nature. 1989;  342 705-708
  • 50 Levine A J. The p53 tumor-suppressor gene.  N Engl J Med. 1992;  326 1350-1351
  • 51 Blagosklonny M V, Toretsky J, Neckers L. Geldanamycin selectively destabilizes and conformationally alters mutated p53.  Oncogene. 1995;  11 933-939
  • 52 McIlwrath A J, Brunton V G, Brown R. Cell-cycle arrest and p53 accumulation induced by geldanamycin in human ovarian tumour cells.  Cancer Chemother Pharmacol. 1996;  37 423-428
  • 53 Blagosklonny M V, Toretsky J, Bohen S, Neckers L. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90.  Proc Natl Acad Sci U S A. 1996;  93 8379-8383
  • 54 Blagosklonny M V. Loss of function and p53 protein stabilization.  Oncogene. 1997;  15 1889-1893
  • 55 Sepehrnia B, Paz I B, Dasgupta G, Momand J. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell.  J Biol Chem. 1996;  271 15084-15090
  • 56 Whitesell L, Sutphin P D, Pulcini E J, Martinez J D, Cook P H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent.  Mol Cell Biol. 1998;  18 1517-1524
  • 57 Nagata Y, Anan T, Yoshida T, Mizukami T, Taya Y, Fujiwara T, Kato H, Saya H, Nakao M. The stabilization mechanism of mutant-type p53 by impaired ubiquitination: the loss of wild-type p53 function and the hsp90 association.  Oncogene. 1999;  18 6037-6049
  • 58 Dasgupta G, Momand J. Geldanamycin prevents nuclear translocation of mutant p53.  Exp Cell Res. 1997;  237 29-37
  • 59 Kubbutat M H, Vousden K H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability.  Mol Cell Biol. 1997;  17 460-468
  • 60 Whitesell L, Sutphin P, An W G, Schulte T, Blagosklonny M V, Neckers L. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo.  Oncogene. 1997;  14 2809-2816
  • 61 Bargmann C I, Hung M C, Weinberg R A. The neu oncogene encodes an epidermal growth factor receptor-related protein.  Nature. 1986;  319 226-230
  • 62 Goldman R, Levy R B, Peles E, Yarden Y. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation.  Biochemistry. 1990;  29 11024-11028
  • 63 King C R, Kraus M H, Aaronson S A. Amplification of a novel v-erbB-related gene in a human mammary carcinoma.  Science. 1985;  229 974-976
  • 64 Slamon D J, Godolphin W, Jones L A, Holt J A, Wong S G, Keith D E, Levin W J, Stuart S G, Udove J, Ullrich A, Press M F. Studies of the her-2/neu proto-oncogene in human breast and ovarian cancer.  Science. 1989;  244 707-712
  • 65 Slamon D J, Clark G M, Wong S G, Levin W J, Ullrich A, McGuire W L. Human breast cancer: correlation of relapse and survival with amplification of the her-2/neu gene.  Science. 1987;  235 177-182
  • 66 Miller P, DiOrio C, Moyer M. et al . Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins.  Cancer Res. 1994;  54 2724-2730
  • 67 Miller P, Schnur R C, Barbacci E, Moyer M P, Moyer J D. Binding of benzoquinoid ansamycins to p100 correlates with their ability to deplete the erbB2 gene product p185.  Biochem Biophys Res Commun. 1994;  201 1313-1319
  • 68 Xu W, Mimnaugh E, Rosser M FN, Nicchittas C, Marcu M, Yarden Y, Neckers L. Sensitivity of mature erbB2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein hsp90.  J Biol Chem. 2001;  276 3702-3708
  • 69 Mimnaugh E G, Chavany C, Neckers L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin.  J Biol Chem. 1996;  271 22796-22801
  • 70 Hartmann F, Horak E M, Cho C, Lupu R, Bolen J B, Stetler-Stevenson M A, Pfreundschuh M, Waldmann T A, Horak I D. Effects of the tyrosine-kinase inhibitor geldanamycin on ligand-induced her-2/neu activation, receptor expression and proliferation of her-2- positive malignant cell lines.  Int J Cancer. 1997;  70 221-229
  • 71 Schnur R C, Corman M L, Gallaschun R J, Cooper B A, Dee M F, Doty J L, Muzzi M L, DiOrio C IBarbacci, Miller P E, Pollack V A, Savage D M, Sloan D E, Pustilnik L R, Moyer J D, Moyer M P. erbB-2 oncogene inhibition by geldanamycin derivatives: synthesis, mechanism of action, and structure-activity relationships.  J Med Chem. 1995;  38 3813-3820
  • 72 Schnur R C, Corman M L, Gallaschun R J, Cooper B A, Dee M F, Doty J L, Muzzi M L, Moyer J D, DiOrio C I, Barbacci E G, Miller P E, O'Brien A T, Morin M J, Foster B A, Pollack V A, Savage D M, Sloan D E, Pustilnik L R, Moyer M P. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives.  J Med Chem. 1995;  38 3806-3812
  • 73 Magnuson N S, Beck T, Vahidi H, Hahn H, Smola U, Rapp U R. The Raf-1 serine/threonine protein kinase.  Semin Cancer Biol. 1994;  5 247-253
  • 74 Marais R, Light Y, Paterson H F, Marshall C J. Ras recruits raf-1 to the plasma membrane for activation by tyrosine phosphorylation.  EMBO J. 1995;  14 3136-3145
  • 75 Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.  Cell. 1988;  53 549-554
  • 76 Heidecker G, Huleihel M, Cleveland J L, Kolch W, Beck T W, Lloyd P, Pawson T, Rapp U R. Mutational activation of c-raf-1 and definition of the minimal transforming sequence.  Mol Cell Biol. 1990;  10 2503-2512
  • 77 Stancato L F, Chow Y H, Hutchinson K A, Perdew G H, Jove R, Pratt W B. Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system.  J Biol Chem. 1993;  268 21711-21716
  • 78 Schulte T W, An W G, Neckers L M. Geldanamycin-induced destabilization of raf-1 involves the proteasome.  Biochem Biophys Res Commun. 1997;  239 655-659
  • 79 Schulte T W, Blagosklonny M V, Ingui C, Neckers L. Disruption of the raf-1-hsp90 molecular complex results in destabilization of raf-1 and loss of raf-1-ras association.  J Biol Chem. 1995;  270 24585-24588
  • 80 Schulte T W, Blagosklonny M V, Romanova L, Mushinski J F, Monia B P, Johnston J F, Nguyen P, Trepel J, Neckers L M. Destabilization of raf-1 by geldanamycin leads to disruption of the raf- 1-MEK-mitogen-activated protein kinase signalling pathway.  Mol Cell Biol. 1996;  16 5839-5845
  • 81 Stancato L F, Silverstein A M, Owens-Grillo J K, Chow Y H, Jove R, Pratt W B. The hsp90-binding antibiotic geldanamycin decreases raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of raf kinase.  J Biol Chem. 1997;  272 4013-4020
  • 82 Schaller M D, Borgman C A, Cobb B S, Vines R R, Reynolds A B, Parsons J T. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions.  Proc Natl Acad Sci USA. 1992;  89 5192-5196
  • 83 Owens L V, Xu L, Craven R J, Dent G A, Weiner T M, Kornberg L, Liu E T, Cance W G. Overexpression of the Focal Adhesion Kinase (p125FAK) in invasive human tumors.  Cancer Res. 1995;  55 2752-2755
  • 84 Weiner T M, Liu E T, Craven R J, Cance W G. Expression of growth factor receptors, the focal adhesion kinase, and other tyrosine kinases in human soft tissue tumors.  Ann Surg Oncol. 1994;  1 18-27
  • 85 Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T, Alzawa S. Reduced cell motility and enhanced focal adhesion contact formation in cells from fak-deficient mice.  Nature. 1995;  377 530-544
  • 86 Frisch S M, Vuori K, Ruoslahti E, Chan-Hui P Y. Control of adhesion- dependent cell survival by focal adhesion kinase.  J Cell Biol. 1996;  134 793-799
  • 87 Frisch S M, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis.  J Cell Biol. 1994;  124 619-626
  • 88 Benchekroun M N, Schneider E, Safa A R, Townsend A J, Sinha B K. Mechanisms of resistance to ansamycin antibiotics in human breast cancer cell lines.  Mol Pharmacol. 1994;  46 677-684
  • 89 Bertram J, Palfner K, Hiddemann W, Kneba M. Increase of P-glycoprotein-mediated drug resistance by hsp 90β.  Anti-Cancer Drugs. 1996;  7 838-845
  • 90 Schulte T W, Neckers L M. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to hsp90 and shares important biologic activities with geldanamycin.  Cancer Chemother Pharmacol. 1998;  42 273-279
  • 91 Sausville E A. Combining cytotoxics and 17-allylamino, 17 demethoxygeldanamycin: sequence and tumor biology matters.  Clin Cancer Res. 2001;  7 2155-2158
  • 92 Münster P N, Basso A, Solit D, Norton L, Rosen N. Modulation of hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner.  Clin Cancer Res. 2001;  7 2228-2236
  • 93 Banerji U, O'Donnell A, Scurr M, Benson C, Hanwell J, Clark S, Raynaud F, Turner A, Walton M, Workman P, Judson I. Phase I trial of the heat shock protein 90 (hsp90) inhibitor 17-allylamino 17-demethoxygeldanamycin (17aag). Pharmacokinetic (PK) profile and pharmacodynamic (PD) endpoints.  Proc Am Soc Clin Oncol. 2001;  20 (82a) 326
  • 94 Munster P N, Tong W, Schwartz L, Larson S, Kenneson K, DeLaCruz A, Rosen N, Scher H. Phase I trial of 17-(allylamino)-17-demethoxygeldanamycin (17AAG) in patients (pts.) with advanced solid malignancies.  Proc Am Soc Clin Oncol. 2002;  20 (83a) 327
  • 95 Wilson R H, Takimoto C H, Agnew E B, Morrison G, Grollman F, Thomas R R, Saif M W, Hopkins J, Allegra C, Grochow L, Szabo E, Hamilton J M, Monahan B P, Neckers L, Grem J L. Phase I pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin (AAG) in adult patients with advanced solid tumors.  Proc Am Soc Clin Oncol. 2001;  20 (82a) 325
  • 96 Mirrington R N, Ritchie E, Shoppee C W, Sternhell S, Taylor W C. Some metabolites of Nectria Radicicola Gerlach & Nilsson (syn. Cylindrocarpon Wr.): The structure of radicicol (monorden).  Austral J Chem. 1965;  19 1265-1284
  • 97 Schulte T W, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft B, Neckers L M. Antibiotic radicicol binds to the N-terminal domain of hsp90 and shares important biologic activities with geldanamycin.  Cell Stress Chaperones. 1998;  3 100-108
  • 98 Soga S, Neckers L M, Schulte T W, Shiotsu Y, Akasak K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of hsp90 binding signaling molecules.  Cancer Res. 1999;  59 2931-2938
  • 99 Byrd C A, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan C F, Ding A. Heat shock protein 90 mediates macrophage activation by taxol and bacterial lipopolysaccharide.  Proc Natl Acad Sci U S A. 1999;  96 5645-5650
  • 100 Itoh H, Ogura M, Komatsuda A, Wakui H, Miura A B, Tashima Y. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone hsp90.  Biochem J. 1999;  343 697-703

Hans-Joachim Ochel

Klinik für Strahlentherapie Medizinische Fakultät, Otto-von-Guericke Universität

Leipziger Straße 44

39120 Magdeburg

Phone: 0391-67-15791

Fax: 0391-67-15324

Email: Hans-Joachim.Ochel@medizin.uni-magdeburg.de

    >