Horm Metab Res 2002; 34(7): 367-370
DOI: 10.1055/s-2002-33468
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Protein Carbonyl Content in Erythrocyte Membranes in Type 2 Diabetic Patients

D.  Konukoğlu 1 , G.  D.  Kemerli 1 , T.  Sabuncu 2 , H.  H.  Hatemi 2
  • 1Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Turkey
  • 2Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University, Turkey
Further Information

Publication History

Received: 20 August 2001

Accepted after second revision: 8 April 2002

Publication Date:
21 August 2002 (online)

Abstract

Protein carbonyl groups result from free radical-induced protein oxidation; their level in tissues and plasma is a relatively stable marker of oxidative damage. Protein carbonyl contents in erythrocyte membranes were investigated in the type 2 diabetic patients with good (n = 16) and poor (n = 30) glycemic control. Diabetic patients were classified as patients with (n = 20) and without (n = 26) angiopathy. Protein carbonyl content was evaluated using the 2,4-dinitro-phenyl-hydrazine method. Protein carbonyl content and GHb levels were significantly higher in both patients with poor and good glycemic control than in control subjects (p < 0.001 in each case). There was a significant difference in protein carbonyl content between patients with poor and good glycemic control (p < 0.001). Diabetic patients with angiopathy had significantly higher protein carbonyl content and GHb levels than the diabetic patients without angiopathy (p < 0.001). These results suggest that impaired glycemic control is connected to protein oxidation, and protein oxidation may be related to underlying metabolic abnormalities and complications of diabetes.

References

  • 1 Sinclair A J. Free radical mechanisms and vascular complications of diabetes mellitus.  Diabetes Reviews. 1993;  2 7-10
  • 2 Wollf S P, Dean R T. Glucose autooxidation and protein modification. The potential role of autoxidative glycosylation in diabetes.  Biochem J. 1988;  245 243- 250
  • 3 Halliwell B, Chirico S. Lipid peroxidation: its naechanism, measurement, and significance.  Am J Clin Nutr. 1993;  57 715-725
  • 4 Wollf S P, Gainer A, Dean R T. Free radicals, lipids and protein degradation.  TIBS. 1986;  11 27-31
  • 5 National Diabetes Data Group . Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance.  Diabetes. 1979;  28 1039-1057
  • 6 Dodge J T, Mitchell C, Hanahan D J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.  Arch Biochem Biophys. 1963;  100 119- 130
  • 7 Levine R L, Williams J A, Stadtman E R, Shachter E. Carbonyl assays for determination of oxidatively modified proteins.  Methods Enzymol. 1994;  233 346-357
  • 8 Lowry O H, Rosenbrough N J, Farr A L, Randall R S. Protein measurement with the folin phenol reagent.  J Biol Chem. 1951;  98 719- 733
  • 9 Baynes J W. Role of oxidative stress in development of complications in diabetes.  Diabetes. 1991;  40 405-412
  • 10 Stadman E R. Protein oxidation and aging.  Science. 1992;  257 1220-1224
  • 11 Stadtman E R. Oxidation of free amino acid residues in proteins by radiolysis and by metal-catalyzed reactions.  Annu Rev Bichem. 1993;  62 797- 821
  • 12 Pacifici E R, Kelvin J AD. Protein degradation as an index of oxidative stress.  Methods Enzymol. 1990;  186 485-502
  • 13 Reznick A Z, Packer L. Oxidative damage to proteins; spectrophotometric method for carbonyl assay.  Methods Enzymol. 1994;  233 357- 363
  • 14 Odetti P, Garibaldi S, Noberasco G, Aragno I, Valentmi S, Traverse N, Marinari U M. Levels of carbonyl groups in plasma proteins of type 2 diabetes mellitus subjects.  Acta Diabetol. 1999;  36 179-183
  • 15 Telci A, Cakatay U. Kayah R, Erdogan C, Oman Y, Sivas A, Akcay T. Oxidative protein damage in plasma of type 2 diabetic patients.  Horm Metab Res. 2000;  32 40-43
  • 16 Kashiwagi A, Asahina T, Nishio Y, Ikebuchi M, Tanaka Y, Kikkawa R. et al . Glycation, oxidative stress, and scavenger activity.  Diabetes. 1996;  45 84-86
  • 17 Yue D K, Morris K, McLennan S, Turtle J R. Glycosylation of plasma protein and its relation to glycated hemoglobin in diabetes.  Diabetes. 1980;  29 296-300
  • 18 Sundaram R, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram K R. Antioxidant status and lipid peroxidation in type 11 diabetes mellitus with and without complications.  Clinical Science. 1996;  90 255-260
  • 19 Asahina T, Kashiwagi A, Nishio Y. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 - in high-glucose medium.  Diabetes. 1995;  44 520-526
  • 20 King G L. Kunisaki M, Nishio Y, Inoquchi T, Sbiha T, Xia P. Biochemical and molecular mechanisms in the development of diabetic vascular complications.  Diabetes. 1996;  45 105-107
  • 21 Altomare E, Grattagliano I, Vendemaile G, Micelh-Ferrari T, Signonle A, Cardia L. Oxidative damage in human diabetic eye: evidence of a retinal participitation.  Eur J Clin Invest. 1997;  27 141-147
  • 22 Odetti P, Traverso N, Cosso L, Noberasco G, Pronzato M A, Marinari U M. Good grycaemic control reduces oxidation and grycation end-products in collagen of diabetic rats.  Diabetologia. 1996;  39 (12) 1440-1447
  • 23 Inouye M, Mito T, Sumino K. Link between glycation and lipoxidation in red blood cells in diabetes.  Clin Chim Acta. 1999;  285 35-44

Prof. D. Konukoğlu, M.D.

Istanbul University · Department of Biochemistry

Fatih Sitesi, B-4 Blok · Daire 5 Silrvrikapı · Fatih, Istanbul · Turkey

Email: dkonuk@yahoo.com

    >