Horm Metab Res 2002; 34(10): 550-555
DOI: 10.1055/s-2002-35426
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Rapid Effect of Testosterone on Rat Sertoli Cell Membrane Potential. Relationship with K+ ATP Channels

E.  I. C. F.  von Ledebur 1 , J.  P.  Almeida 2 , E.  S.  Loss 2 , G.  F.  Wassermann 2
  • 1Department of Biochemistry, ICBS, UFRGS. Porto Alegre, Brazil
  • 2Department of Physiology, ICBS, UFRGS. Porto Alegre, Brazil
Further Information

Publication History

Received: 16 January 2002

Accepted after revision: 24 July 2002

Publication Date:
19 November 2002 (online)

Abstract

For this study, we investigated the changes in the electrophysiological parameters of Sertoli cells in seminiferous tubules from 17 - 19 day-old rats induced by testosterone. Using conventional intracellular microelectrode techniques, we analysed the membrane potential and its input resistance. The entire tubules were fixed in a superfusion chamber continuously perfused with Krebs-Ringer bicarbonate buffer (pH 7.4, 32 °C). Visual control of cell impalement was achieved using an inverted microscope. The parameters analysed were passed through an amplifier and recorded using a proprietary software system.

The topical application of testosterone (0.1 to 10 μM) led to an immediate (within 30 seconds) and significant dose-dependent depolarization of the membrane potential of the cell at all concentrations used. Concomitantly, the input resistance of the cell membrane underwent a significant increment at 30 seconds. These changes returned to resting values after washout. Topical administration of 17β-estradiol or progesterone (10 μM) did not change the membrane potential.

The addition of the K+ ATP channel agonist diazoxide to the perfusion buffer nullified the depolarization effect of testosterone at 30 seconds. This result suggests that the immediate action of testosterone is associated with the closing of K+ ATP channels, thereby depolarizing the membrane.

References

  • 1 Carreau S, Foucault P, Drosdowsky M A. La cellule de Sertoli: aspects fonctionnels comparés chez le rat, le porc et l’homme.  Ann Endocrinol. 1994;  55 203-220
  • 2 Wassermann G F, Monti Bloch L, Grillo M L, Silva F RMB, Loss E S, McConnell L L. Electrophysiological changes of Sertoli cells produced by the acute administration of amino acid and FSH.  Horm Metab Res. 1992;  24 326-328
  • 3 Gorkzynska E, Spaliverio J, Handelsman D J. The relationship between 3’,5’-cyclic adenosine monophosphate and calcium in mediating follicle stimulating hormone signal transduction in Sertoli cells.  Endocrinology. 1994;  134 293-300
  • 4 Taranta A, Morena A R, Barbacci E, D'Agostino A. Ω-Conotoxin-sensitive Ca2+ voltage-gated channels modulate protein secretion in cultured Sertoli cells.  Mol Cell Endocrinol. 1997;  26 117-123
  • 5 Lalevée N, Christian R, Frédéric B, Joffre M. Acute effects of adenosine triphosphates, cyclic 3’,5’-adenosine monophosphates, and follicle-stimulating hormone on cytosolic calcium level in cultured immature rat Sertoli cells.  Biol Reprod. 1999;  61 343-352
  • 6 Gorkzynska E, Handelsman D J. Androgens rapidly increase the cytosolic calcium concentration in Sertoli cells.  Endocrinology. 1995;  136 2052-2059
  • 7 Leite L, Luchi R, von Ledebur E ICF, Loss E S, Wassermann G F. Testosterone induces immediate membrane depolarization and stimulates 45Ca2+ uptake in Sertoli cells from rats of different maturation stages.  Med Sci Res. 1999;  27 25-28
  • 8 Lyng F M, Jones G R, Rommerts F F. Rapid androgen actions on calcium signaling in rat Sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations.  Biol Reprod. 2000;  63 736-747
  • 9 Armen T A, Gay C V. Simultaneous detection and functional response of testosterone and estradiol receptors in osteoblast plasma membranes.  J Cell Biochem. 2000;  79 620-627
  • 10 Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein.  J Biol Chem. 1994;  269 7217-7223
  • 11 Wassermann G F, Monti Bloch L, Grillo M L, Silva F RMB, Loss E S, McConnell L L. Biochemical factors involved in the FSH action on amino acid transport in immature rat testes.  Horm Metab Res. 1992;  24 326-328
  • 12 Dunne W J, Petersen O H. Potassium selective ion channels in insulin secreting cells: physiology, pharmacology and their role in insulin secreting cells.  Biochim Biophys Acta. 1991;  1071 67-82
  • 13 Kim S H, Cho K W, Chang S H, Kim S Z, Chae S W. Glibenclamide suppresses stretch-activated ANP secretion. Invlovement of K+ ATP channels and L-type Ca2+ channel modulation.  Pflügers Arch. 1997;  434 362-372
  • 14 Miranda M J, Liedke P ER, Leite L, Loss E S, Wassermann G F. Glibenclamide changes membrane potential and stimulates 45Ca2+ uptake and amino acid accumulation in Sertoli cells of immature rats.  Med Sci Res. 1998;  26 703-706
  • 15 Turner T T, Jones C E, Howards S S, Ewing L L, Zegeye B, Gunsalus G L. On the androgen microenvironment of maturing spermatozoa.  Endocrinology. 1984;  115 1925-1932
  • 16 Eusebi F, Riparo E, Fratamico G, Russo M A, Stefanini M. Intracellular communication in rat Seminiferous tubules.  Dev Biol. 1983;  100 249-255
  • 17 Loss E S, Barreto K P, Leite L, Wassermann G F. Comparative study of the actions of isoproterenol and retinol on amino acid accumulation, 45Ca2+ uptake and membrane potential in Sertoli cells.  Med Sci Res. 1988;  26 195-199
  • 18 Zilinska L, Gromadzinska E, Lachowics L. Short-time effects of neuroactive steroids on rat cortical Ca2+-ATPase activity.  Biochim Biophys Acta. 1999;  1437 257-264
  • 19 Brann D W, Hendry L B, Mahesh V B. Emerging diversities in the mechanism of action of steroids hormones.  J Steroid Biochem Molec Biol. 1995;  52 113-133
  • 20 Langrange A H, Rønnekleiv O K, Kelly M J. Estradiol-17β and μ-Opiod peptides rapidly hyperpolarize GnRH neurons: a cellular mechanism of negative feedback?.  Endocrinology. 1995;  136 2341-2344
  • 21 Okabe K, Okamoto F, Fajita H, Takada K, Soeda H. Estrogen directly acts on osteoclasts via inhibition of inward rectifier K+ channels. Naunyn-Schmiedeberger’s Arch.  Pharmacol. 2000;  361 610-620
  • 22 Brubaker K D, Gay C V. Depolarization of osteoclast plasma membrane potential by 17beta-estradiol.  J Bone Miner Res. 1999;  14 1861-1866
  • 23 Felix B, Catalin D, Miolan J P, Niel J P. Effects of testosterone on the electrical properties and nicotinic transmission of the major pelvic and coeliac ganglion neurones.  J Neuroendocrinol. 2001;  13 193-198
  • 24 Waldegger S, Beisse F, Apfel H, Breit S, Kolb H A, Haussinger D, Lang F. Electrophysiological effects of progesterone on hepatocytes.  Biochim Biophys Acta. 1995;  1266 186-190
  • 25 Orsini J C, Barone F C, Armstrong D L, Wayner M J. Direct effects of androgens on lateral hypothalamic neuronal activity in the male rat: I. A microiontophoretic study.  Brain Res Bull. 1985;  15 293-297
  • 26 Benten W PM, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris C E, Mossmann H, Wunderlich F. Functional testosterone receptors in plasma membranes of T cells.  FASEB J. 1999;  13 123-133
  • 27 Awoniyi C A, Santulli R, Sprando R L, Ewing L L, Zirkin B R. Restoration of advanced spermatogenic cells in the experimentally regressed rat testis: quantitative relationship to testosterone concentration within the testis.  Endocrinology. 1989;  124 1217-1223
  • 28 Rommerts F F. How much androgen is required for maintenance of spermatogenesis?.  J Endocr. 1988;  116 7-9
  • 29 Jarrow J P, Chen H, Rosner W, Trentacoste S, Zirkin B R. Assessment of the androgen environment within the human testis: minimally invasive method to obtain intratesticular fluid.  J Androl. 2001;  22 640-645
  • 30 Maddocks S, Hargreave T B, Reddie K, Fraser H M, Kerr J B, Sharpe R M. Intratesticular hormone levels and the route of secretion of hormones from the testis of rat, guinea-pig, monkey, and human.  Int J Androl. 1993;  16 272-278
  • 31 Hakola K, Pierroz D D, Aebi A, Vuagnat B AM, Aubert M L, Huhtaniemi I. Dose and time relationships of intravenously injected rat recombinant luteinizing hormone and testicular testosterone secretion in the male rat.  Biol Reprod. 1998;  59 338-343
  • 32 Bartke A, Dalterio S. Evidence for episodic secretion of testosterone in laboratory mice.  Steroids. 1975;  26 749-756
  • 33 Coquelin A, Desjardins C. Luteinizing hormone and testosterone secretion in young and old male mice.  Am J Physiol. 1982;  243 E257-E263
  • 34 Dixit V D, Singh B, Singh P, Georgie G C, Galhotra M M, Dixit V P. Circadian and pulsatile variations in plasma levels of inhibin, FSH and testosterone in adult Murrah buffalo bulls.  Theriogenology. 1998;  50 283-292
  • 35 Sheppard D N, Robinson K A. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.  J Physiol. 1997;  503 333-346

Prof. G. F. Wassermann, M.D.

Departamento de Fisiologia, ICBS, UFRGS ·

Rua Sarmento Leite, 500 · CEP: 90050-170 · Porto Alegre, RS · Brazil

Phone: + 55 (51) 33 16-33 02

Fax: + 55 (51) 33 16-33 02

Email: gwass@vortex.ufrgs.br

    >