Abstract
For this study, we investigated the changes in the electrophysiological parameters
of Sertoli cells in seminiferous tubules from 17 - 19 day-old rats induced by testosterone.
Using conventional intracellular microelectrode techniques, we analysed the membrane potential and its input resistance. The entire tubules were
fixed in a superfusion chamber continuously perfused with Krebs-Ringer bicarbonate
buffer (pH 7.4, 32 °C). Visual control of cell impalement was achieved using an inverted
microscope. The parameters analysed were passed through an amplifier and recorded
using a proprietary software system.
The topical application of testosterone (0.1 to 10 μM) led to an immediate (within
30 seconds) and significant dose-dependent depolarization of the membrane potential
of the cell at all concentrations used. Concomitantly, the input resistance of the cell membrane underwent a significant increment at 30
seconds. These changes returned to resting values after washout. Topical administration
of 17β-estradiol or progesterone (10 μM) did not change the membrane potential.
The addition of the K+
ATP channel agonist diazoxide to the perfusion buffer nullified the depolarization effect
of testosterone at 30 seconds. This result suggests that the immediate action of testosterone
is associated with the closing of K+
ATP channels, thereby depolarizing the membrane.
Key words
Androgen Membrane Action - Sertoli Cell Electrophysiology - Rat Seminiferous Tubules
- Diazoxide
References
- 1
Carreau S, Foucault P, Drosdowsky M A.
La cellule de Sertoli: aspects fonctionnels comparés chez le rat, le porc et l’homme.
Ann Endocrinol.
1994;
55
203-220
- 2
Wassermann G F, Monti Bloch L, Grillo M L, Silva F RMB, Loss E S, McConnell L L.
Electrophysiological changes of Sertoli cells produced by the acute administration
of amino acid and FSH.
Horm Metab Res.
1992;
24
326-328
- 3
Gorkzynska E, Spaliverio J, Handelsman D J.
The relationship between 3’,5’-cyclic adenosine monophosphate and calcium in mediating
follicle stimulating hormone signal transduction in Sertoli cells.
Endocrinology.
1994;
134
293-300
- 4
Taranta A, Morena A R, Barbacci E, D'Agostino A.
Ω-Conotoxin-sensitive Ca2+ voltage-gated channels modulate protein secretion in cultured Sertoli cells.
Mol Cell Endocrinol.
1997;
26
117-123
- 5
Lalevée N, Christian R, Frédéric B, Joffre M.
Acute effects of adenosine triphosphates, cyclic 3’,5’-adenosine monophosphates, and
follicle-stimulating hormone on cytosolic calcium level in cultured immature rat Sertoli
cells.
Biol Reprod.
1999;
61
343-352
- 6
Gorkzynska E, Handelsman D J.
Androgens rapidly increase the cytosolic calcium concentration in Sertoli cells.
Endocrinology.
1995;
136
2052-2059
- 7
Leite L, Luchi R, von Ledebur E ICF, Loss E S, Wassermann G F.
Testosterone induces immediate membrane depolarization and stimulates 45Ca2+ uptake in Sertoli cells from rats of different maturation stages.
Med Sci Res.
1999;
27
25-28
- 8
Lyng F M, Jones G R, Rommerts F F.
Rapid androgen actions on calcium signaling in rat Sertoli cells and two human prostatic
cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations.
Biol Reprod.
2000;
63
736-747
- 9
Armen T A, Gay C V.
Simultaneous detection and functional response of testosterone and estradiol receptors
in osteoblast plasma membranes.
J Cell Biochem.
2000;
79
620-627
- 10
Lieberherr M, Grosse B.
Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate
and diacylglycerol formation via a pertussis toxin-sensitive G-protein.
J Biol Chem.
1994;
269
7217-7223
- 11
Wassermann G F, Monti Bloch L, Grillo M L, Silva F RMB, Loss E S, McConnell L L.
Biochemical factors involved in the FSH action on amino acid transport in immature
rat testes.
Horm Metab Res.
1992;
24
326-328
- 12
Dunne W J, Petersen O H.
Potassium selective ion channels in insulin secreting cells: physiology, pharmacology
and their role in insulin secreting cells.
Biochim Biophys Acta.
1991;
1071
67-82
- 13
Kim S H, Cho K W, Chang S H, Kim S Z, Chae S W.
Glibenclamide suppresses stretch-activated ANP secretion. Invlovement of K+
ATP channels and L-type Ca2+ channel modulation.
Pflügers Arch.
1997;
434
362-372
- 14
Miranda M J, Liedke P ER, Leite L, Loss E S, Wassermann G F.
Glibenclamide changes membrane potential and stimulates 45Ca2+ uptake and amino acid accumulation in Sertoli cells of immature rats.
Med Sci Res.
1998;
26
703-706
- 15
Turner T T, Jones C E, Howards S S, Ewing L L, Zegeye B, Gunsalus G L.
On the androgen microenvironment of maturing spermatozoa.
Endocrinology.
1984;
115
1925-1932
- 16
Eusebi F, Riparo E, Fratamico G, Russo M A, Stefanini M.
Intracellular communication in rat Seminiferous tubules.
Dev Biol.
1983;
100
249-255
- 17
Loss E S, Barreto K P, Leite L, Wassermann G F.
Comparative study of the actions of isoproterenol and retinol on amino acid accumulation,
45Ca2+ uptake and membrane potential in Sertoli cells.
Med Sci Res.
1988;
26
195-199
- 18
Zilinska L, Gromadzinska E, Lachowics L.
Short-time effects of neuroactive steroids on rat cortical Ca2+-ATPase activity.
Biochim Biophys Acta.
1999;
1437
257-264
- 19
Brann D W, Hendry L B, Mahesh V B.
Emerging diversities in the mechanism of action of steroids hormones.
J Steroid Biochem Molec Biol.
1995;
52
113-133
- 20
Langrange A H, Rønnekleiv O K, Kelly M J.
Estradiol-17β and μ-Opiod peptides rapidly hyperpolarize GnRH neurons: a cellular
mechanism of negative feedback?.
Endocrinology.
1995;
136
2341-2344
- 21
Okabe K, Okamoto F, Fajita H, Takada K, Soeda H.
Estrogen directly acts on osteoclasts via inhibition of inward rectifier K+ channels. Naunyn-Schmiedeberger’s Arch.
Pharmacol.
2000;
361
610-620
- 22
Brubaker K D, Gay C V.
Depolarization of osteoclast plasma membrane potential by 17beta-estradiol.
J Bone Miner Res.
1999;
14
1861-1866
- 23
Felix B, Catalin D, Miolan J P, Niel J P.
Effects of testosterone on the electrical properties and nicotinic transmission of
the major pelvic and coeliac ganglion neurones.
J Neuroendocrinol.
2001;
13
193-198
- 24
Waldegger S, Beisse F, Apfel H, Breit S, Kolb H A, Haussinger D, Lang F.
Electrophysiological effects of progesterone on hepatocytes.
Biochim Biophys Acta.
1995;
1266
186-190
- 25
Orsini J C, Barone F C, Armstrong D L, Wayner M J.
Direct effects of androgens on lateral hypothalamic neuronal activity in the male
rat: I. A microiontophoretic study.
Brain Res Bull.
1985;
15
293-297
- 26
Benten W PM, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris C E, Mossmann H, Wunderlich F.
Functional testosterone receptors in plasma membranes of T cells.
FASEB J.
1999;
13
123-133
- 27
Awoniyi C A, Santulli R, Sprando R L, Ewing L L, Zirkin B R.
Restoration of advanced spermatogenic cells in the experimentally regressed rat testis:
quantitative relationship to testosterone concentration within the testis.
Endocrinology.
1989;
124
1217-1223
- 28
Rommerts F F.
How much androgen is required for maintenance of spermatogenesis?.
J Endocr.
1988;
116
7-9
- 29
Jarrow J P, Chen H, Rosner W, Trentacoste S, Zirkin B R.
Assessment of the androgen environment within the human testis: minimally invasive
method to obtain intratesticular fluid.
J Androl.
2001;
22
640-645
- 30
Maddocks S, Hargreave T B, Reddie K, Fraser H M, Kerr J B, Sharpe R M.
Intratesticular hormone levels and the route of secretion of hormones from the testis
of rat, guinea-pig, monkey, and human.
Int J Androl.
1993;
16
272-278
- 31
Hakola K, Pierroz D D, Aebi A, Vuagnat B AM, Aubert M L, Huhtaniemi I.
Dose and time relationships of intravenously injected rat recombinant luteinizing
hormone and testicular testosterone secretion in the male rat.
Biol Reprod.
1998;
59
338-343
- 32
Bartke A, Dalterio S.
Evidence for episodic secretion of testosterone in laboratory mice.
Steroids.
1975;
26
749-756
- 33
Coquelin A, Desjardins C.
Luteinizing hormone and testosterone secretion in young and old male mice.
Am J Physiol.
1982;
243
E257-E263
- 34
Dixit V D, Singh B, Singh P, Georgie G C, Galhotra M M, Dixit V P.
Circadian and pulsatile variations in plasma levels of inhibin, FSH and testosterone
in adult Murrah buffalo bulls.
Theriogenology.
1998;
50
283-292
- 35
Sheppard D N, Robinson K A.
Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance
regulator Cl- channels expressed in a murine cell line.
J Physiol.
1997;
503
333-346
Prof. G. F. Wassermann, M.D.
Departamento de Fisiologia, ICBS, UFRGS ·
Rua Sarmento Leite, 500 · CEP: 90050-170 · Porto Alegre, RS · Brazil
Phone: + 55 (51) 33 16-33 02
Fax: + 55 (51) 33 16-33 02
Email: gwass@vortex.ufrgs.br