Int J Sports Med 2002; 23(8): 537-543
DOI: 10.1055/s-2002-35527
Physiology & Biochemistry

© Georg Thieme Verlag Stuttgart · New York

Metabolic and Hemodynamic Responses to Exercise in Subcutaneous Adipose Tissue and Skeletal Muscle

M.  Boschmann1 , M.  Rosenbaum1, 2 , R.  L.  Leibel1, 2 , K.  R.  Segal3
  • 1Laboratory of Human Behavior and Metabolism, The Rockefeller University, New York, USA
  • 2Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, USA
  • 3Department of Pediatrics, Cornell University Medical College, New York, USA
Further Information

Publication History



Accepted after revision: March 14, 2002

Publication Date:
19 November 2002 (online)

Abstract

This study evaluated the effect of standardized bicycle exercise on metabolism and blood flow in abdominal (aSAT) and femoral subcutaneous adipose tissue (fSAT) and skeletal muscle in eleven women and nine men. Using microdialysis, the respective tissues were perfused with Ringer's solution (+ 50 mM ethanol) and dialysate [ethanol], [glycerol], [lactate] and [pyruvate] were measured in order to estimate blood flow (ethanol dilution technique), lipolysis and glycolysis, respectively. At rest, blood flow tended to be higher in the respective tissues of women when compared to men. During exercise, blood flow was increased significantly in fSAT and muscle, but not in aSAT. Dialysate [glycerol] was increased two- to three-fold in aSAT and fSAT, similarly in men and women. However, in muscle, dialysate [glycerol] was increased five-fold in women and four-fold in men without reaching a steady state in women. Corrected for blood flow, the increase in lipolysis was greater in muscle than in fSAT, and greater in fSAT than in aSAT, and in muscle the increase was greater for women compared with men. Dialysate [lactate] and [lactate]/[pyruvate] ratio were much more increased in muscle compared with aSAT and fSAT. It is concluded that lipids stored in muscle are rather used than lipids stored in adipose tissue for fueling the energy metabolism of muscle during exercise. During exercise, lipid mobilization is much greater in women than in men.

References

  • 1 Arner P, Liljeqvist L, Östman J. Metabolism of mono- and diacylglycerols in subcutaneous adipose tissue of obese and normal weight subjects.  Acta Med Scand. 1976;  200 187-194
  • 2 Arner P, Kriegholm E, Engfeldt P, Bolinder J. Adrenergic regulation of lipolysis in situ at rest and during exercise.  J Clin Invest. 1990;  85 893-898
  • 3 Arner P. Adrenergic receptor function in fat cells.  Am J Clin Nutr. 1992;  55 228S-236S
  • 4 Arner P. Techniques for the measurement of white adipose tissue metabolism: a practical guide.  Int J Obes Relat Metab Disord. 1995;  19 435-442
  • 5 Bernt E, Gutmann I. Ethanol. Determination with alcohol dehydrogenase and NAD. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Weinheim; Verlag Chemie 1974 3: 1499-1505
  • 6 Björntorp P. Fat cell distribution and metabolism.  Ann NY Acad Sci. 1987;  499 66-72
  • 7 Björntorp P. The regulation of adipose tissue distribution in humans.  Int J Obes Relat Metab Disord. 1996;  20 291-302
  • 8 Brechtel K, Niess A M, Machann J, Rett K, Schick F, Claussen C D, Dickhuth H H, Haering H U, Jacob S. Utilisation of intramyocellular lipids (IMCLs) during exercise as assessed by proton magnetic resonance spectroscopy (1H-MRS).  Horm Metab Res. 2001;  33 63-66
  • 9 Cortright R N, Muoio D M, Dohm G L. Skeletal muscle lipid metabolism: A frontier for new insights into fuel homeostasis.  Nutr Biochem. 1997;  8 228-245
  • 10 Enoksson S, Nordenstrom J, Bolinder J, Arner P. Influence of local blood flow on glycerol levels in human adipose tissue.  Int J Obes Relat Metab Disord. 1995;  19 350-354
  • 11 Fellander G, Linde B, Bolinder J. Evaluation of the microdialysis ethanol technique for monitoring of subcutaneous adipose tissue blood flow in humans.  Int J Obes Rel Metab Disord. 1996;  20 220-226
  • 12 Gorski J. Muscle triglyceride metabolism during exercise.  Can J Physiol Pharmacol. 1992;  70 123-131
  • 13 Hagström-Toft E, Enoksson S, Moberg E, Bolinder J, Arner P. Absolute concentrations of glycerol and lactate in human skeletal muscle, adipose tissue, and blood.  Am J Physiol. 1997;  273 E584-E592
  • 14 Hagström-Toft E, Enoksson S, Moberg E, Bolinder J, Arner P. β-adrenergic regulation of lipolysis and blood flow in human skeletal muscle in vivo. .  Am J Physiol. 1998;  275 E909-E916
  • 15 Hellmér J, Arner P, Lundin A. Automatic luminometric assay of glycerol for lipolysis studies.  Anal Biochem. 1989;  177 132-137
  • 16 Hellström L, Blaak E, Hagström-Toft E. Gender differences in adrenergic regulation of lipid mobilization during exercise.  Int J Sports Med. 1996;  17 439-447
  • 17 Hickner R C, Rosdahl H, Borg I, Ungerstedt U, Jorfeldt L, Henriksson J. The ethanol technique of monitoring local blood flow changes in rat skeletal muscle: implications for microdialysis.  Acta Physiol Scand. 1992;  146 87-97
  • 18 Hickner R C, Bone D, Ungerstedt U, Jorfeldt L, Henriksson J. Muscle blood flow during intermittent exercise: comparison of the microdialysis ethanol technique and 133Xe clearance.  Clin Sci. 1994;  86 15-25
  • 19 Hickner R C, Ekelund U, Mellander S, Ungerstedt U, Henriksson J. Muscle blood flow in cats: comparison of microdialysis ethanol technique with direct measurement.  J Appl Physiol. 1995;  79 638-647
  • 20 Jeukendrup A E, Saris W HM, Wagenmakers A JM. Fat metabolism during exercise: A review. Part I: Fatty acid mobilization and muscle metabolism.  Int J Sports Med. 1998;  19 231-244
  • 21 Kelly D E, Goodpaster B H. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance.  Diab Care. 2001;  24 933-944
  • 22 Leibel R L, Hirsch J. Site- and sex-related differences in adrenoceptor status of human adipose tissue.  J Clin Endocrinol Metab. 1987;  64 1205-1210
  • 23 Lönnroth P, Smith U. Microdialysis - a novel technique for clinical investigations.  J Intern Med. 1990;  227 295-300
  • 24 Lönnroth P, Smith U. Intermediary metabolism with an emphasis on lipid metabolism, adipose tissue, and fat cell metabolism: A review. In: Björntorp P, Brodoff BN (eds) Obesity. Philadelphia; Lippincott Company 1992: 3-14
  • 25 Lundin A, Arner P, Hellmér J. A new linear plot for standard curves in kinetic substrate assays extended above the Michaelis-Menten constant: Application to a luminometric assay of glycerol.  Anal Biochem. 1989;  177 125-131
  • 26 Maggs D G, Jacob R, Rife F, Lange R, Leone P, During M J, Tamborlane W V, Sherwin R S. Interstitial fluid concentrations of glycerol, glucose and amino acids in human quadriceps muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle.  J Clin Invest. 1995;  96 370-377
  • 27 Mauriege P, Galitzky J, Berlan M, Lafontan M. Heterogeneous distribution of beta- and alpha2-adrenoceptor binding sites in human fat cells from various deposits: functional consequences.  Eur J Pharmacol. 1987;  17 156-165
  • 28 Mora-Rodriguez R, Hodgkinson B J, Byerley L O, Coyle E F. Effects of β-adrenergic receptor stimulation and blockade on substrate metabolism during submaximal exercise.  Am J Physiol Endocrinol Metab. 2001;  280 E752-E760
  • 29 Östman J, Arner P, Engfeldt P, Kager L. Regional differences in the control of lipolysis in human adipose tissue.  Metabolism. 1979;  28 1198-1205
  • 30 Oscai L B, Essig D A, Palmer W K. Lipase regulation of muscle triglyceride hydrolysis.  J Appl Physiol. 1990;  69 1571-1577
  • 31 Rådegran G, Pilegaard H, Nielsen J J, Bangsbo J. Microdialysis ethanol removal reflects probe recovery rather than local blood flow in skeletal muscle.  J Appl Physiol. 1998;  85 751-757
  • 32 Rosdahl H, Ungerstedt U, Jorfeldt L, Henriksson J. Interstitial glucose and lactate balance in human skeletal muscle and adipose tissue studied by microdialysis.  J Physiol. 1993;  471 637-657
  • 33 Rosenbaum M, Leibel R L, Hirsch J. Obesity.  N Engl J Med. 1997;  337 396-407
  • 34 Ståhle L, Segersvard S, Ungerstedt U. A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis.  J Pharmacol Methods. 1991;  25 41-52
  • 35 Stallknecht B, Donsmark M, Enevoldsen L H, Fluckey J D, Galbo H. Estimation of rat muscle blood flow by microdialysis probes perfused with ethanol, [14C]ethanol, and 3H2O.  J Appl Physiol. 1999;  86 1054-1061
  • 36 Steinberg D, Vaughan M, Margolis S. Studies of triacylglyceride-biosynthesis in homogenates of adipose tissue.  J Biol Chem. 1961;  236 1631-1637
  • 37 Wallgren F, Amberg G, Hickner R C, Ekelund U, Jorfeldt L, Henriksson J. A mathematical model for measuring blood flow in the skeletal muscle with the microdialysis ethanol technique.  J Appl Physiol. 1995;  79 648-659

Dr. M. Boschmann

German Institute of Human Nutrition · Dept. Biochemistry & Physiology of Nutrition

Arthur-Scheunert-Allee 114-116 · 14558 Bergholz-Rehbrücke · Germany ·

Phone: +49 (33200) 88-430

Fax: +49 (33200) 88-500

Email: boschman@www.dife.de

    >