Semin Musculoskelet Radiol 2002; 06(3): 253-262
DOI: 10.1055/s-2002-36723
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Imaging of Trabecular Bone Structure

Thomas M. Link, Jan S. Bauer
  • 1Department of Radiology, Technische Universität München, Munich, Germany
Further Information

Publication History

Publication Date:
23 January 2003 (online)

ABSTRACT

In addition to bone mass, trabecular bone architecture is an important entity in assessing bone fragility, which is crucial in the diagnosis of osteoporosis. A number of imaging techniques have been used to analyze bone structure noninvasively. Projection radiography has been used with good results in the peripheral skeleton; however, this is only a two-dimensional technique, which reflects trabecular bone structure to a certain extent. High-resolution tomographic techniques, such as high-resolution magnetic resonance imaging and computed tomography (CT), have a limited spatial resolution but the potential to image three-dimensional architecture of trabecular bone. With the advances in magnetic resonance hardware and software and new CT techniques (i.e., multislice spiral CT and clinical micro-CT), noninvasive imaging of trabecular bone is becoming more feasible.

REFERENCES

  • 1 Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis.  Am J Med. 1993;  94 646-650
  • 2 Cooper C. The epidemiology of fragility fractures: is there a role for bone quality?.  Calcif Tissue Int . 1993;  53 S23-26
  • 3 Chevalier F, Laval-Jeantet A M, Laval-Jeantet M, Bergot C. CT image analysis of the vertebral trabecular network in vivo.  Calcif Tissue Int . 1992;  51 8-13
  • 4 Dalstra M, Huiskes A, van Odgaard L. Mechanical and textural properties of pelvic trabecular bone.  J Biomech . 1993;  27 375-389
  • 5 Lespessailles E, Jullien A, Eynard E. Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture.  J Biomech . 1998;  31 817-824
  • 6 Lespessailles E, Roux J P, Benhamou C L. Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry.  Calcif Tissue Int . 1998;  63 121-125
  • 7 Ross P D, Davis J W, Wasnich R D, Vogel J M. A critical review of bone mass and the risk of fractures in osteoporosis.  Cacif Tissue Int . 1990;  46 149-161
  • 8 Vesterby A, Mosekilde L, Gundersen H J. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae.  Bone . 1991;  12 219-224
  • 9 Parfitt M. Bone histomorphometry: standardization of nomenclature, symbols and units. Summary of a proposed system.  Bone and Mineral . 1988;  4 1-5
  • 10 Parfitt M, Drezner M K, Glorieux F H. Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee.  J Bone Miner Res . 1987;  2 595-610
  • 11 Parfitt A M, Majumdar S. Fractal geometry as a means of assessing trabecular structure. IEEE Nuclear Science Symposium and Medical Imaging Conference 1991: 1844
  • 12 Majumdar S, Prasad R R. Fractal analysis for assessing trabecular structure.  Radiology . 1991;  181(Suppl) 188-189
  • 13 Ishida T, Kazuya Y, Takigawa A, Kariya K, Itoh H. Trabecular pattern analysis using fractal dimension.  Jpn J Appl Phys Vol . 1993;  32 1867-1871
  • 14 Benhamou C L, Lespessailes E, Touliere D. Fractal evaluation of trabecular bone microarchitecture: comparative study of calcaneus and ultradistal radius.  J Bone Miner Res . 1993;  8 263
  • 15 Benhamou C L, Lespessailes E, Touliere D. Fractal characterization of trabecular bone microarchitecture: interest of a maximum likelihood estimator.  J Bone Miner Res . 1993;  8 263
  • 16 Benhamou C L, Lespessailles E, Jacquet G. Fractal organization of trabecular bone images on calcaneus radiographs.  J Bone Miner Res . 1994;  9 1909-1918
  • 17 Geraets W GM, van der Stelt P, Netelenbos C J, Elders P JM. A new method for automatic recognition of the radiographic trabecular pattern.  J Bone Miner Res . 1990;  5 227-232
  • 18 Doyle F H, Gutteridge D H, Joplin G F, Fraser R. An assessment of radiologic criteria used in the study of spinal osteoporosis.  Br J Radiol . 1967;  40 241-250
  • 19 Singh Y M, Nagrath A R, Maini P S. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis.  J Bone Joint Surg . 1970;  52-A 457-467
  • 20 Lin J C, Grampp S, Link T. Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density.  Osteoporos Int . 1999;  9 516-524
  • 21 Wigderowitz C A, Paterson C R, Dashti H, McGurty D, Rowley D I. Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA?.  Osteoporos Int . 2000;  11 840-846
  • 22 Pothuaud L, Lespessailles E, Harba R. Fractal analysis of trabecular bone texture on radiographs: discriminant value in post menopausal osteoporosis.  Osteoporos Int . 1998;  8 618-625
  • 23 Schneider H PG. Langfristige Östrogentherapie zur Osteoporoseprophylaxe. In: Wolf AS, Schneider HPG, eds. Östrogene in Diagnostik und Therapie Berlin: Springer 1990: 25-30
  • 24 Caligiuri P, Giger M L, Favus M. Multifractal radiographic analysis of osteoporosis.  Med Phys . 1994;  21 503-508
  • 25 Caligiuri P, Giger M L, Favus M J. Computerized radiographic analysis of osteoporosis: preliminary evaluation.  Radiology . 1993;  186 471-474
  • 26 Schiezel M. Eine neue Methode zur Bestimmung der Stabilität des Knochens bei Osteoporose mit Hilfe eines bildanalytischen Verfahrens an der Nativröntgenaufnahme der Lendenwirbelsäule. Habilitationsschrift [thesis], Herdecke; 1993
  • 27 Chen J, Zheng B, Chang Y H. Fractal analysis of trabecular patterns in projection radiographs. An assessment.  Invest Radiol . 1994;  29 624-629
  • 28 Veenland J F, Grashuis J L, van der Mer F, Beckers A LD, Gelsema E S. Estimation of fractal dimension in radiographs.  Med Phys . 1996;  23 585-594
  • 29 Link T M, Vieth V, Stehling C. High resolution MRI versus multislice spiral CT-which technique depicts the trabecular bone structure best (in press)?.  Eur Radiol 2002.
  • 30 Ruegsegger P, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture.  Calcif Tissue Int . 1996;  58 24-29
  • 31 Engelke K, Graeff W, Meiss L, Hahn M, Delling G. High spatial resolution imaging of bone using computed microtomography: comparison with microradiography and undecalcified histologic sections.  Invest Radiol . 1993;  28 341-349
  • 32 Muller R, Hahn M, Vogel M, Delling G, Ruegsegger P. Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections.  Bone . 1996;  18 215-220
  • 33 Muller R, Hildebrand T, Hauselmann H J, Ruegsegger P. In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT.  J Bone Miner Res . 1996;  11 1745-1750
  • 34 Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-micron-resolution microcomputed tomography.  Bone . 1999;  24 35-39
  • 35 Laib A, Ruegsegger P. Comparison of structure extraction methods for in vivo trabecular bone measurements.  Comput Med Imaging Graph . 1999;  23 69-74
  • 36 Kinney J H, Ryaby J T, Haupt D L, Lane N E. Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis.  Technol Health Care . 1998;  6 339-350
  • 37 Muller R, Van Campenhout H, Van Damme B. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography.  Bone . 1998;  23 59-66
  • 38 Ito M, Nakamura T, Matsumoto T, Tsurusaki K, Hayashi K. Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture.  Bone . 1998;  23 163-169
  • 39 Ito M, Ohki M, Hayashi K. Trabecular texture analysis of CT images in the relationship with spinal fracture.  Radiology . 1995;  194 55-59
  • 40 Mundinger A, Wiesmeier B, Dinkel E. Quantitative image analysis of vertebral body architecture-improved diagnosis in osteoporosis based on high-resolution computed tomography.  Osteoporos Int . 1993;  3 138-147
  • 41 Gordon C L, Lang T F, Augat P, Genant H K. Image-based assessment of spinal structure bone from high-resolution CT images.  Osteoporos Int . 1998;  8 317-325
  • 42 Cortet B, Dubois P, Boutry N. Image analysis of the distal radius network using computed tomography.  Osteoporos Int . 1999;  9 410-419
  • 43 Majumdar S, Genant H K, Grampp S. Correlation of trabecular bone structure with age, bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging.  J Bone Miner Res . 1997;  12 111-118
  • 44 Lin J C, Amling M, Newitt D C. Heterogeneity of trabecular bone structure in the calcaneus using high resolution magnetic resonance imaging (MRI).  Osteoporos Int . 1996;  8 16-24
  • 45 Link T M, Majumdar S, Lin J C. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT.  J Bone Miner Res . 1998;  13 122-132
  • 46 Link T M, Majumdar S, Augat P. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients.  J Bone Miner Res . 1998;  13 1175-1182
  • 47 Majumdar S, Newitt D, Mathur A. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with x-ray tomographic microscopy and biomechanics.  Osteoporos Int . 1996;  6 376-385
  • 48 Kuehn B, Stampa B, Heller M, Glueer C C. In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging.  Osteoporos Int . 1997;  7 291
  • 49 Wehrli F W, Gomberg B R, Saha P K. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis.  J Bone Miner Res . 2001;  16 1520-1531
  • 50 Wehrli F W, Hwang S N, Ma J. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing.  Radiology . 1998;  206 347-357
  • 51 Hipp J A, Jansujwicz A, Simmons C, Snyder B. Trabecular bone morphology from micro-magnetic resonance imaging.  J Bone Miner Res . 1996;  11 286-292
  • 52 Chung H W, Wehrli F W, William J L, Kugelmass S D, Wehrli S L. Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging.  J Bone Miner Res . 1995;  10 803-811
  • 53 Chung H W, Wehrli F W, Williams J L, Wehrli S L. Three dimensional nuclear magnetic resonance micro-imaging of trabecular bone.  J Bone Miner Res . 1995;  10 1452-1461
  • 54 Majumdar S, Newitt D, Jergas M. Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging.  Bone . 1995;  17 417-430
  • 55 Majumdar S, Link T M, Augat P. Trabecular bone architecture in the distal radius using MR imaging in subjects with fractures of the proximal femur.  Osteoporos Int . 1999;  10 231-239
  • 56 Link T M, Lotter A, Beyer F. Post-cardiac transplantation changes in calcaneal trabecular bone structure: a magnetic resonance imaging study.  Radiology . 2000;  217 855-862
  • 57 Link T M, Saborowski S, Kisters K. Changes in calcaneal trabecular bone structure assessed with high resolution MRI in patients with kidney transplantation.  Osteoporos Int . 2002;  13 119-129
  • 58 Link T M, Vieth V, Matheis J. Bone structure of the distal radius and the calcaneus versus BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures.  Eur Radiol . 2002;  12 401-408
  • 59 Ouyang X, Selby K, Lang P, Majumdar S, Genant H. High resolution MR imaging of the calcaneus: age-related changes in trabecular structure and comparison with DXA measurements.  Calcif Tissue Int . 1997;  60 139-147
  • 60 Wu Z, Chung H, Wehrli F. Sub voxel tissue classification in NMR microscopic images of trabecular bone. New York, Proceedings of the Society of Magnetic Resonance in Medicine; April 1993: 451
  • 61 Vieth V, Link T M, Lotter A. Does the trabecular structure depicted by high resolution MRI of the calcaneus reflect the true bone structure?.  Invest Radiol . 2001;  36 210-217
  • 62 Majumdar S, Weinstein R S, Prasad R R. Application of fractal geometry techniques to the study of trabecular bone.  Med Phys . 1993;  20 1611-1619
  • 63 Majumdar S, Weinstein R S, Prasad R R. The fractal dimension of trabecular bone: a measure of trabecular structure.  Calcif Tissue Int . 1993;  52 168
  • 64 Majumdar S, Genant H K, Grampp S. Analysis of trabecular bone structure in the distal radius using high-resolution MRI.  Eur Radiol . 1994;  4 517-524
  • 65 Buckland-Wright J C, Lynch J A, Rymer J, Fogelman I. Fractal signature analysis of macroradiographs measures trabecular organization in lumbar vertebrae of postmenopausal women.  Calcif Tissue Int . 1994;  54 106-112
  • 66 Prasad R, Majumdar S. Fractal geometry as a means of assessing trabecular structure. IEEE Nuclear Science Symposium and Medical Imaging Conference; Santa Fe, NM, 1991: 1844
  • 67 Stelt D, Geraets W GM. The use of fractal dimension to describe the trabecular pattern in osteoporosis.  J Dental Res . 1990;  69 287
  • 68 Weinstein R S, Majumdar S. Fractal geometry and vertebral compression fractures.  Bone Min Res . 1994;  9 1797-1802
  • 69 Link T M, Majumdar S, Lin J C. Assessment of trabecular structure using high-resolution CT images and texture analysis.  J Comput Assist Tomogr . 1998;  22 15-24
  • 70 Link T M, Majumdar S, Lin J. Texture analysis of magnification radiographs in correlation with compressive strength of human vertebrae and bone mineral density.  J Bone Miner Res . 1996;  11(Suppl 1) S475
  • 71 Veenland J F, Grashuis J L, Gelsema E S, Beckers A LD, van Kujik C. Texture analysis of trabecular bone in radiographs to detect osteoporosis. Symposium for Computer Assisted Radiology; Winston-Salem, NC, June, 1994: 77-82
  • 72 Veenland J F, Link T M, Konermann W. Unraveling the role of structure and density in determining vertebral bone strength.  Calcif Tissue Int . 1997;  61 474-479
  • 73 Laib A, Barou O, Vico L. 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis.  Med Biol Eng Comput . 2000;  38 326-332
  • 74 Borah B, Dufresne T E, Cockman M D. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling.  J Bone Miner Res . 2000;  15 1786-1797
  • 75 Majumdar S, Newitt D C, Kothari M. Measuring 3D trabecular structure and anisotropy using magnetic resonance.  Osteoporosis Int . 1997;  7 272
  • 76 Newitt D C, Majumdar S, van Rietbergen B. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.  Osteoporos Int . 2002;  13 6-17
  • 77 Newitt D C, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties.  Osteoporos Int . 2002;  13 278-287
  • 78 Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone.  Bone . 1999;  25 55-60
    >