Abstract
Relaxin is a peptide hormone that, in humans, is encoded by two genes referred to
as H1 and H2, both located into chromosome 9p24.1. We have searched for polymorphisms
in the 5’-flanking sequence of these genes. Both genes possess a CT repeat followed
by a GT repeat. CT and GT repeats of the H2 gene are longer than those of the H1 gene.
Moreover, CT and GT repeats of the H2 gene, but not those of the H1 gene, show length
polymorphism. Protein-DNA interaction experiments suggest that difference between
the H1 and H2 GT repeats may have arisen because the requirements of the transcriptional
regulation of the two genes are different.
Key words
Polymorphisms - Microsatellites - Relaxin - Protein-DNA Interaction
References
- 1
Isaacs N, James R, Niall H. et al .
Relaxin and its structural relationship to insulin.
Nature.
1978;
271
278-281
- 2
Osheroff P L, Ho W H.
Expression of relaxin mRNA and relaxin receptors in postnatal and adult rat brains
and hearts. Localization and developmental patterns.
J Biol Chem..
1993;
268
15 193-15 199
- 3
Yang R H, Bunting S, Wyss J M, Berecek K H, Zhang L, Jin H.
Pressor and bradycardic effects of centrally administered relaxin in conscious rats.
Am J Hypertens.
1995;
8
375-381
- 4
Bani D.
Relaxin: a pleiotropic hormone.
Gen Pharmacol.
1997;
28
13-22
- 5
Zhao L, Roche P J, Gunnerson J M. et al .
Mice without a functional relaxin gene are unable to deliver milk to their pups.
Endocrinology.
1999;
140
445-453
- 6
Crawford R J, Hudson P, Shine J, Niall H D, Eddy R L, Shows T B.
Two human relaxin genes are on chromosome 9.
EMBO J.
1984;
3
2341-2345
- 7
Crawford R J, Hammond V E, Roche P J, Johnston P D, Tregear G W.
Structure of rhesus monkey relaxin predicted by analysis of the single-copy rhesus
monkey relaxin gene.
J Mol Endocrinol.
1989;
3
169-174
- 8
Evans B A, Fu P, Tregear G W.
Characterization of two relaxin genes in the chimpanzee.
J Endocrinol.
1994;
140
385-392
- 9
Garibay-Tupas J L, Csiszàr K, Fox M, Povey S, Bryant-Greenwood G D.
Analysis of the 5’-upstream regions of the human relaxin H1 and H2 genes and their
chromosomal localization on chromosome 9p24.1 by radiation hybrid and breakpoint mapping.
J Mol Endocrinol.
1999;
23
355-365
- 10
Gunnersen J M, Roche P J, Tregear G W, Crawford R J.
Characterization of human relaxin gene regulation in the relaxin-expressing human
prostate adenocarcinoma cell line LNCaP.FGC.
J Mol Endocrinol.
1995;
15
153-166
- 11
Garibay-Tupas J L, Bao S, Kim M T, Tashima L S, Bryant-Greenwood G D.
Isolation and analysis of the 3’-untranslated regions of the human relaxin H1 and
H2 genes.
J Mol Endocrinol.
2000;
24
241-252
- 12
Rothenburg S, Koch-Nolte F, Rich A, Haag F.
A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits
promoter activity.
PNAS.
2001;
31
8985-8990
- 13
Arnold R, Maueler W, Bassili G, Lutz M, Burke L, Epplen T J, Renkawitz R.
The insulator protein CTCF represses transcription on binding to the (gt)(22)(ga)(15)
microsatellite in intron 2 of the HLA-DRB1(*)0401 gene.
Gene.
2000;
8
209-214
- 14
Akai J, Kimura A, Hata R I.
Transcriptional regulation of the human type I collagen alpha2 (COL1A2) gene by the
combination of two dinucleotide repeats.
Gene.
1999;
18
65-73
- 15
Fabbro D, Pellizzari L, Mercuri S, Tell G, Damante G.
Pax-8 protein levels regulate thyroglobulin gene expression.
J Mol Endocrinol.
1998;
21
347-354
- 16
Weber J L, Wong C.
Mutation of short tandem repeats.
Hum Mol Genet.
1993;
2
1123-1128
- 17
Ellegren H.
Heterogeneous mutation processes in human microsatellite DNA sequences.
Nat Genet.
2000;
24
400-402
- 18
Weber J L.
Informativeness of human (dC-dA)n and (dG-dT)n polymorphisms.
Genomics.
1990;
7
524-530
- 19
Welsh J B, Zarrinkar P P, Sapinoso L M, Kern S G, Behling C A, Monk B J, Lockhart D J,
Burger R A, Hampton G M.
Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples
identifies candidate molecular markers of epithelial ovarian cancer.
PNAS.
2001;
98
1176-1181
- 20
Kozmik Z, Kurzbauer R, Dörfler P, Busslinger M.
Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates
isoforms with different transactivation properties.
Mol Cell Biology.
1993;
13
6024-6035
- 21
Zannini M, Francis-Lang H, Plachov D, di Lauro R.
Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition
site of a homeodomain and activates transcription from two thyroid-specific promoters.
Mol Cell Biology.
1992;
12
4230-4241
- 22
Pellizzari L, Tell G, Damante G.
Co-operation between the PAI and RED subdomains of Pax-8 in the interaction with the
thyroglobulin promoter.
Biochem J.
1999;
15
253-262.
- 23
Pellizzari L, Fabbro D, Lonigro R, di Lauro R, Damante G.
A network of specific minor-groove contacts is a common characteristic of paired-domain-DNA
interactions.
Biochem J.
1996;
315
363-367.
- 24
Bogic L V, Yamamoto S Y, Millar L K, Bryant-Greenwood G D.
Developmental regulation of the human relaxin genes in the decidua and placenta: overexpression
in the preterm premature rupture of the fetal membranes.
Biol Reprod.
1997;
57
908-920
- 25
Millar L K, Boesche M H, Yamamoto S Y, Killeen J, DeBuque L, Chen R, Bryant-Greenwood G D.
A relaxin-mediated pathway to preterm premature rupture of the fetal membranes that
is independent of infection.
Am J Obstet Gynecol.
1998;
179
126-134
Prof. G. Damante
Dipartimento di Scienze e Tecnologie Biomediche
Piazzale Kolbe 1 · 33100 Udine · Italy
Phone: + 39 (432) 49 43 74
Fax: + 39 (432) 49 43 79
Email: GDamante@makek.dstb.uniud.it