Zusammenfassung
Für Superparamagnetische Eisenoxidpartikel (SPIO) ist in den letzten 15 Jahren ein
weites Anwendungsspektrum als Kontrastmittel für die MRT aufgezeigt worden. SPIO können
mit verschiedenen Partikelgrößen und Oberflächenbeschichtungen hergestellt werden.
SPIO mit größeren Partikeldurchmessern (50 - 150 nm) bewirken überwiegend eine Signalminderung
bzw. T2-Verkürzung, werden als Kontrastmittel in der MRT von Leber und Milz eingesetzt und
führen zu einer hohen Genauigkeit vor allem im Nachweis von Lebermetastasen (zugelassene
Substanzen: AMI-25 (Endorem bzw. Ferridex), SHU-555A (Resovist)). Kleinere Partikel
(ca. 20 nm Durchmesser) zeigen eine andere Organverteilung und haben das Potenzial,
die nicht-invasive Lymphknotendiagnostik zu verbessern oder vulnerable atherosklerotische
Plaques zu charakterisieren (in der klinischen Prüfung: AMI-227 [Sinerem bzw. Combidex]).
Partikel mit optimierter T1-Relaxivität und verlängerter intravasaler Zirkulationszeit sind als Blutpool-Kontrastmittel
für die MR-Angiographie einsetzbar. Als Indikationen werden derzeit die MR-Angiographie
des Körperstamms, peripherer Arterien und der Koronararterien geprüft (z. B. SHU 555
C (Supravist), VSOP-C184). Weitere derzeit in der Prüfung befindliche Indikationen
kleiner SPIO sind die MRT des Knochenmarks sowie die Bestimmung von Parametern der
Perfusion von Tumoren oder z. B. des Myokards. Eine entsprechende Modifikation der
Partikelhülle ermöglicht Ansätze der sogenannten Molekularen Bildgebung, z. B. Rezeptor-gerichtete
Bildgebung, Markierung von Zellen zum in-vivo Monitoring der Zellmigration, z. B.
von Stammzellen, Markierung von Genkonstrukten zur Lokalisationskontrolle in der Gentherapie.
In der Tumortherapie können SPIO als Vermittler für die Hyperthermie eingesetzt werden.
SPIO stellen ein wirkungsvolles MR-Kontrastmittel mit vielseitigen Einsatzmöglichkeiten
in der Bildgebenden Diagnostik bis hin zur Molekularen Medizin dar.
Abstract
A wide range of applications for superparamagnetic iron oxide (SPIO) particles as
contrast media for MRI has emerged over the last 15 years. SPIO particles can be manufactured
with different particle sizes and surface coatings. Large SPIO particles (50 - 150
nm) predominantly produce a signal decrease or T2-shortening and are used as contrast media for MRI of the liver and spleen. They have
a high accuracy, especially in detecting liver metastases (approved for clinical use:
AMI-25 (Endorem or Ferridex), SHU-555A (Resovist)). Smaller particles (about 20 nm
in diameter) show a different organ distribution and have a potential for improving
noninvasive lymph node assessment or characterizing vulnerable atherosclerotic plaques
(in clinical trials: AMI-227 [Sinerem or Combidex]). Particles with an optimized T1-relaxivity and prolonged intravascular circulation time can be used as blood pool
contrast media for MR angiography. The currently investigated indications are MR angiography
of the trunk, peripheral vessels, and coronary arteries (e.g., SHU-555 C (Supravist),
VSOP-C 184). Other applications of small SPIO particles include MRI of the bone marrow
and the determination of perfusion parameters in tumors or other tissues like the
myocardium. SPIO particles with a modified coat can be used in so-called molecular
imaging, such as receptor-directed imaging, cell labeling for in-vivo monitoring of
cell migration, e.g., stem cell labeling, and labeling of gene constructs for localization
in genetic therapy. In tumor therapy SPIO particles can serve as mediators for hyperthermia.
SPIO is a powerful MR contrast medium with manifold applications ranging from diagnostic
imaging to molecular medicine.
Key words
Magnetic resonance imaging - MRI - contrast medium - iron oxide particles - superparamagnetism
Literatur
- 1
Kobozev N I, Evdokimov V B, Zubovich I A, Mal'tsev A N.
Magnetochemistry of active centers. I. Magnetic and catalytic properties of dilute
layers.
Zhur Fiz Khim.
1952;
26
1349-1373
- 2
Bean C P, Jacobs I S.
Magnetic granulometry and superparamagnetism.
J Appl Phys.
1956;
27
1448-1452
- 3
Kronick P, Gilpin R W.
Use of superparamagnetic particles for isolation of cells.
J Biochem Biophys Methods.
1986;
12
73-80
- 4
Renshaw P F, Owen C S, Evans A E, Leigh J S.
Immunospecific NMR contrast agents.
Magn Reson Imaging.
1986;
4
351-357
- 5
Hemmingsson A, Carlsten J, Ericsson A, Klaveness J, Sperber G O, Thuomas K A.
Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic
particles in proton magnetic resonance imaging.
Acta Radiologica.
1987;
28
703-705
- 6
Saini S, Stark D D, Hahn P F, Wittenberg J, Brady T J, Ferrucci J T.
Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial
system.
Radiology.
1987;
162
211-216
- 7
Wang Y X, Hussain S M, Krestin G P.
Superparamagnetic iron oxide contrast agents: physicochemical characteristics and
applications in MR imaging.
Eur Radiol.
2001;
11
2319-2331
- 8
Lawaczeck R, Bauer H, Frenzel T, Hasegawa M, Ito Y, Kito K, Miwa N, Tsutsui H, Vogler H,
Weinmann H J.
Magnetic iron oxide particles coated with carboxydextran for parenteral administration
and liver contrasting. Pre-clinical profile of SH U 555 A.
Acta Radiologica.
1997;
38
584-597
- 9
Widder D J, Greif W L, Widder K J, Edelman R R, Brady T J.
Magnetite albumin microspheres: a new MR contrast material.
Am J Roentgenol.
1987;
148
399-404
- 10
Kreft B P, Tanimoto A, Leffler S, Finn J P, Oksendal A N, Stark D D.
Contrast-enhanced MR imaging of diffuse and focal splenic disease with use of magnetic
starch microspheres.
J Magn Reson Imaging.
1994;
4
373-379
- 11
Saeed M, Wendland M F, Engelbrecht M, Sakuma H, Higgins C B.
Value of blood pool contrast agents in magnetic resonance angiography of the pelvis
and lower extremities.
Eur Radiol.
1998;
8
1047-1053
- 12
Paeuser S, Reszka R, Wagner S, Wolf K-J, Buhr H-J, Berger G.
Liposome-encapsulated superparamagnetic iron oxide particles as markers in an MRI-guided
search for tumor-specific drug carriers.
Anti-Cancer Drug Design.
1997;
12
125-135
- 13
Taupitz M, Schnorr J, Abramjuk C, Wagner S, Pilgrimm H, Hunigen H, Hamm B.
New generation of monomer-stabilized very small superparamagnetic iron oxide particles
(VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits.
J Magn Reson Imaging.
2000;
12
905-911
- 14
Weissleder R, Stark D D, Engelstad B L, Bacon B R, Campton C C, White D L, Jacobs P,
Lewis J.
Superparamagnetic iron oxide: pharmacokinetics and toxicity.
Am J Roentgenol.
1989;
152
167-173
- 15
Knollmann F D, Bock J C, Rautenberg K, Beier J, Ebert W, Felix R.
Differences in predominant enhancement mechanisms of superparamagnetic iron oxide
and ultrasmall superparamagnetic iron oxide for contrast-enhanced portal magnetic
resonance angiography: preliminary results of an animal study original investigation.
Invest Radiol.
1998;
33
637-643
- 16
Bremer C, Allkemper T, Baermig J, Reimer P.
RES-specific iamging of the liver and spleen with iron oxide particles designed for
blood pool MR-angiography.
J Magn Reson Imaging.
1999;
10
461-467
- 17
Oswald P, Clement O, Chambon C, Schouman-Claeys E, Frija G.
Liver positive enhancement after injection of superparamagnetic nanoparticles: respective
role of circulating and uptaken particles.
Magn Reon Imaging.
1997;
15
1025-1031
- 18
Hamm B, Reichel M, Vogl T, Taupitz M, Wolf K J.
Superparamagnetische Eisenpartikel. Klinische Ergebnisse in der MR-Diagnostik von
Lebermetastasen.
Fortschr Röntgenstr.
1994;
160
52-58
- 19
Kehagias D T, Gouliamos A D, Smyrniotis V, Vlahos L J.
Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide
particles (SH U 555 A).
J Magn Reson Imaging.
2001;
14
595-601
- 20
Müller R D, Vogel K, Neumann K, Hirche H, Barkhausen J, Stoblen F, Henrich H, Langer R.
SPIO-MR imaging versus double-phase spiral CT in detecting malignant lesions of the
liver.
Acta Radiologica.
1999;
40
628-635
- 21
Ba-Ssalamah A, Heinz-Peer G, Schima W, Schibany N, Schick S, Prokesch R W, Kaider A,
Teleky B, Wrba F, Lechner G.
Detection of focal hepatic lesions: comparison of unenhanced and SHU 555 A-enhanced
MR imaging versus biphasic helical CTAP.
J Magn Reson Imaging.
2000;
11
665-672
- 22
Vogl T J, Hammerstingl R, Pegios W, Hamm B, Eibl-Eibesfeldt A, Woessmer B, Lissner J,
Felix R.
Wertigkeit des leberspezifischen superparamagnetischen Kontrastmittels AMI-25 für
die Detektion und Differentialdiagnose lebereigener Tumoren versus Metastasen.
Fortschr Röntgenstr.
1994;
160
319-328
- 23
Grandin C, Van Beers B E, Robert A, Gigot J F, Geubel A, Pringot J.
Benign hepatocellular tumors: MRI after superparamagnetic iron oxide administration.
J Comput Assist Tomogr.
1995;
19
412-418
- 24
Beets-Tan R G, Van Engelshoven J M, Greve J W.
Hepatic adenoma and focal nodular hyperplasia: MR findings with superparamagnetic
iron oxide-enhanced MRI.
Clin Imag.
1998;
22
211-215
- 25
Bartolotta T V, Midiri M, Galia M, Carcione A, De Maria M, Lagalla R.
Benign hepatic tumors: MRI features before and after administration of superparamagnetic
contrast media.
Radiologia Medica.
2001;
101
219-229
- 26
Saini S, Edelman R R, Sharma P, Li W, Mayo-Smith W, Slater G J, Eisenberg P J, Hahn P F.
Blood-pool MR contrast material for detection and characterization of focal hepatic
lesions: initial clinical experience with ultrasmall superparamagnetic iron oxide
(AMI-227).
Am J Roentgenol.
1995;
164
1147-1152
- 27
Müller M, Reimer P, Wiedermann D, Allkemper T, Marx C, Tombach B, Rummeny E J, Shamsi K,
Balzer T, Peters P E.
T1-gewichtete dynamische MRT mit neuen superparamagnetischen Eisenoxidpartikeln (Resovist):
Ergebnisse einer Studie am Phantom sowie an 25 Patienten.
Fortschr Röntgenstr.
1998;
168
228-236
- 28
Saini S, Sharma R, Baron R L, Turner D A, Ros P R, Hahn P F, Small W C, Delange E E,
Stillman A E, Edelman R R, Runge V M, Outwater E K.
Multicentre dose-ranging study on the efficacy of USPIO ferumoxtran-10 for liver MR
imaging.
Clin Radiol.
2000;
55
690-695
- 29
Clement O, Schouman-Claeys E, Frija G.
Ferrite particles (AMI25): Influence of cirrhosis and chemotherapy on magnetic resonance
imaging of metastasis.
Invest Radiol.
1990;
25
S61-S62
- 30
Kato N, Ihara S, Tsujimoto T, Miyazawa T.
Effect of resovist on rats with different severities of liver cirrhosis.
Invest Radiol.
2002;
37
292-298
- 31
Lucidarme O, Baleston F, Cadi M, Bellin M F, Charlotte F, Ratziu V, Grenier P A.
Non-invasive detection of liver fibrosis: Is superparamagnetic iron oxide particle-enhanced
MR imaging a contributive technique?.
Eur Radiol.
2003;
13
467-474
- 32
Weissleder R, Elizondo G, Josephson L, Compton C C, Fretz C J, Stark D D, Ferrucci J T.
Experimental lymph node metastases: enhanced detection with MR lymphography.
Radiology.
1989;
171
835-839
- 33
Hamm B, Taupitz M, Hussmann P, Wagner S, Wolf K J.
MR lymphography with iron oxide particles: dose-response studies and pulse sequence
optimization in rabbits.
Am J Roentgenol.
1992;
158
183-190
- 34
Taupitz M, Wagner S, Hamm B, Binder A, Pfefferer D.
Interstitial MR lymphography with iron oxide particles: results in tumor-free and
VX2 tumor-bearing rabbits.
Am J Roentgenol.
1993;
161
193-200
- 35
Weissleder R, Elizondo G, Wittenberg J, Lee A S, Josephson L, Brady T J.
Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing
lymph nodes with MR imaging.
Radiology.
1990;
175
494-498
- 36
Weissleder R, Elizondo G, Wittenberg J, Rabito C A, Bengele H H, Josephson L.
Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast
agents for MR imaging.
Radiology.
1990;
175
489-493
- 37
Mühler A, Zhang X, Wang H, Lawaczeck R, Weinmann H J.
Investigation of mechanisms influencing the accumulation of ultrasmall superparamagnetic
iron oxide particles in lymph nodes.
Invest Radiol.
1995;
30
98-103
- 38
Elste V, Wagner S, Taupitz M, Pfefferer D, Kresse M, Hamm B, Berg R, Wolf K J, Semmler W.
Magnetic resonance lymphography in rats: effects of muscular activity and hyperthermia
on the lymph node uptake of intravenously injected superparamagnetic iron oxide particles.
Acad Radiol.
1996;
3
660-666
- 39
Clement O, Rety F, Cuenod C A, Siauve N, Carnot F, Bordat C, Siche M, Frija G.
MR lymphography: evidence of extravasation of superparamagnetic nanoparticles into
the lymph. Discussion S 183 - S 184.
Acad Radiol.
1998;
5
(Suppl 1)
S170-S 172
- 40
Rety F, Clement O, Siauve N, Cuenod C A, Carnot F, Sich M, Buisine A, Frija G.
MR lymphography using iron oxide nanoparticles in rats: pharmacokinetics in the lymphatic
system after intravenous injection.
J Magn Reson Imaging.
2000;
12
734-739
- 41
Wagner S, Pfefferer D, Ebert W, Kresse M, Taupitz M, Hamm B, Lawaczeck R, Wolf K J.
Intravenous MR lymphography with superparamagnetic iron oxide particles: Experimental
studies in rats and rabbits.
Eur Radiol.
1995;
5
640-646
- 42
Bellin M F, Roy C, Kinkel K, Thoumas D, Zaim S, Vanel D, Tuchmann C, Richard F, Jacqmin D,
Delcourt A, Challier E, Lebret T, Cluzel P.
Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic
iron oxide particles - initial clinical experience.
Radiology.
1998;
207
799-808
- 43
Harisinghani M G, Saini S, Weissleder R, Hahn P F, Yantiss R K, Tempany C, Wood B J,
Mueller P R.
MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with
primary abdominal and pelvic malignancies: radiographic-pathologic correlation.
Am J Roentgenol.
1999;
172
1347-1351
- 44
Hoffman H T, Quets J, Toshiaki T, Funk G F, McCulloch T M, Graham S M, Robinson R A,
Schuster M E, Yuh W T.
Functional magnetic resonance imaging using iron oxide particles in characterizing
head and neck adenopathy.
Laryngoscope.
2000;
110
1425-1430
- 45
Hudgins P A, Anzai Y, Morris M R, Lucas M A.
Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement
agent for imaging lymph nodes: a phase 2 dose study.
Am J Neuroradiol.
2002;
23
649-656
- 46
Mack M G, Balzer J O, Straub R, Eichler K, Vogl T J.
Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes.
Radiology.
2002;
222
239-244
- 47
Harisinghani M G, Saini S, Slater G J, Schnall M D, Rifkin M D.
MR imaging of pelvic lymph nodes in primary pelvic carcinoma with ultrasmall superparamagnetic
iron oxide (Combidex): preliminary observations.
J Magn Reson Imaging.
1997;
7
161-163
- 48
Pannu H K, Wang K P, Borman T L, Bluemke D A.
MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast
agent.
J Magn Reson Imaging.
2000;
12
899-904
- 49
Sigal R, Vogl T, Casselman J, Moulin G, Veillon F, Hermans R, Dubrulle F, Viala J,
Bosq J, Mack M, Depondt M, Mattelaer C, Petit P, Champsaur P, Riehm S, Dadashitazehozi Y,
de Jaegere T, Marchal G, Chevalier D, Lemaitre L, Kubiak C, Helmberger R, Halimi P.
Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with
ultrasmall superparamagnetic iron oxide particles (Sinerem MR) - results of a phase-III
multicenter clinical trial.
Eur Radiol.
2002;
12
1104-1113
- 50
Seneterre E, Weissleder R, Jaramillo D, Reimer P, Lee A S, Brady T J, Wittenberg J.
Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging.
Radiology.
1991;
179
529-533
- 51
Daldrup-Link H E, Rummeny E J, Ihssen B, Kienast J, Link T M.
Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin's lymphoma:
differentiation between tumor infiltration and hypercellular bone marrow.
Eur Radiol.
2002;
12
1557-1566
- 52
Daldrup H E, Link T M, Blasius S, Strozyk A, Konemann S, Jurgens H, Rummeny E J.
Monitoring radiation-induced changes in bone marrow histopathology with ultra-small
superparamagnetic iron oxide (USPIO)-enhanced MRI.
J Magn Reson Imaging.
1999;
9
643-652
- 53
Daldrup-Link H E, Reinlander C, Link T M, Richter K J, Konemann S, Rummeny E J.
Experimentelle Untersuchungen zur Wertigkeit von SPIO für die MRT des Knochenmarks
vor und nach Ganzkörperbestrahlung.
Fortschr Röntgenstr.
2001;
173
547-553
- 54
Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C.
Magnetic labeling of activated microglia in experimental gliomas.
Neoplasia.
2001;
3
489-499
- 55
Beckmann N, Joergensen J, Bruttel K, Rudin M, Schuurman H J.
Magnetic resonance imaging for the evaluation of rejection of a kidney allograft in
the rat.
Transplant International.
1996;
9
175-183
- 56
Kanno S, Lee P C, Dodd S J, Williams M, Griffith B P, Ho C.
A novel approach with magnetic resonance imaging used for the detection of lung allograft
rejection.
J Thorac Cardiovasc Surg.
2000;
120
923-934
- 57
Kanno S, Wu Y J, Lee P C, Dodd S J, Williams M, Griffith B P, Ho C.
Macrophage accumulation associated with rat cardiac allograft rejection detected by
magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles.
Circulation.
2001;
104
934-938
- 58
Mühler A, Freise C E, Kuwatsuru R, Rosenau W, Liu T, Mintorovitch J, Clement O, Vexler V,
Mahboubi S, Lang P.
Acute liver rejection: evaluation with cell-directed MR contrast agents in a rat transplantation
model.
Radiology.
1993;
186
139-146
- 59
Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P.
Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of
size and dose on vascular contrast enhancement in rabbits.
Radiology.
2002;
223
432-438
- 60
Urhahn R, Adam G, Busch N, Chen J H, Euringer W, Gunther R A.
Superparamagnetische Eisenoxidpartikel: Welchen Stellenwert hat der T1-Effekt für die MR-Diagnostik fokaler Leberläsionen?.
Fortschr Röntgenstr.
1996;
165
364-370
- 61
Knollmann F D, Böck J C, Teltenkotter S, Wlodarczyk W, Mühler A, Vogl T J, Felix R.
Evaluation of portal MR angiography using superparamagnetic iron oxide.
J Magn Reson Imaging.
1997;
7
191-196
- 62
Reimer P, Marx C, Rummeny E J, Muller M, Lentschig M, Balzer T, Dietl K H, Sulkowski U,
Berns T, Shamsi K, Peters P E.
SPIO-enhanced 2D-TOF MR angiography of the portal venous system: results of an intraindividual
comparison.
J Magn Reson Imaging.
1997;
7
945-949
- 63
Schmitz S A, Albrecht T, Jensen K, Wolf K J.
SPIO-unterstützte MR- Angiographie des portalvenösen Systems.
Fortschr Röntgenstr.
2000;
172
51-54
- 64
Schmitz S A, Albrecht T, Wolf K J.
MR angiography with superparamagnetic iron oxide: feasibility study.
Radiology.
1999;
213
603-607
- 65
Clarke S E, Weinmann H J, Dai E, Lucas A R, Rutt B K.
Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental
study in rabbits.
Radiology.
2000;
214
787-794
- 66
Kellar K E, Fujii D K, Gunther W H, Briley-Saebo K, Spiller M, Koenig S H.
„NC100150”, a preparation of iron oxide nanoparticles ideal for positive-contrast
MR angiography.
MAGMA.
1999;
8
207-213
- 67
Stillman A E, Wilke N, Li D, Haacke M, McLachlan S.
Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries:
studies in human patients.
J Comput Assist Tomogr.
1996;
20
51-55
- 68
Hofman M B, Henson R E, Kovacs S J, Fischer S E, Lauffer R B, Adzamli K, De Becker J,
Wickline S A, Lorenz C H.
Blood pool agent strongly improves 3D magnetic resonance coronary angiography using
an inversion pre-pulse.
Magn Reson Med.
1999;
41
360-367
- 69
Johansson L O, Nolan M M, Taniuchi M, Fischer S E, Wickline S A, Lorenz C H.
High-resolution magnetic resonance coronary angiography of the entire heart using
a new blood-pool agent, NC100150 injection: comparison with invasive x-ray angiography
in pigs.
J Cardiovasc Magn Reson.
1999;
1
139-143
- 70
Taupitz M, Schnorr J, Wagner S, Abramjuk C, Pilgrimm H, Kivelitz D, Schink T, Hansel J,
Laub G, Hunigen H, Hamm B.
Coronary MR angiography: experimental results with a monomer-stabilized blood pool
contrast medium.
Radiology.
2002;
222
120-126
- 71
Sandstede J J, Pabst T, Wacker C, Wiesmann F, Hoffmann V, Beer M, Kenn W, Bauer W,
Hahn D.
Breath-hold 3D MR coronary angiography with a new intravascular contrast agent (feruglose)
- first clinical experiences.
Magn Reson Imaging.
2001;
19
201-205
- 72
Bedaux W L, Hofman W B, Wielopolski P A, de Cock C C, Hoffmann V, Oudkerk M, de Feyter P J,
van Rossum A C.
Three-dimensional magnetic resonance coronary angiography using a new blood pool contrast
agent: initial experience.
J Cardiovasc Magn Reson.
2002;
4
273-282
- 73
Knuesel P R, Nanz D, Wolfensberger U, Saranathan M, Lehning A, Luescher T F, Marincek B,
Von Schulthess G K, Schwitter J.
Multislice breath-hold spiral magnetic resonance coronary angiography in patients
with coronary artery disease: Effect of intravascular contrast medium.
J Magn Reson Imaging.
2002;
16
660-667
- 74
Amano Y, Herfkens R J, Shifrin R Y, Alley M T, Pelc N J.
Three-dimensional cardiac cine magnetic resonance imaging with an ultrasmall superparamagnetic
iron oxide blood pool agent (NC100150).
J Magn Reson Imaging.
2000;
11
81-86
- 75
Schmitz S A, Coupland S E, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W,
Wolf K J.
Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable
hyperlipidemic rabbits.
Invest Radiol.
2000;
35
460-471
- 76
Ruehm S G, Corot C, Vogt P, Kolb S, Debatin J F.
Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic
particles of iron oxide in hyperlipidemic rabbits.
Circulation.
2001;
103
415-422
- 77
Schmitz S A, Taupitz M, Wagner S, Wolf K J, Beyersdorff D, Hamm B.
Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron
oxide particles.
J Magn Reson Imaging.
2001;
14
355-361
- 78
Schmitz S A, Winterhalter S, Schiffler S, Gust R, Wagner S, Kresse M, Coupland S E,
Semmler W, Wolf K J.
USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits.
Radiology.
2001;
221
237-243
- 79
Johansson L O, Bjornerud A, Ahlstrom H K, Ladd D L, Fujii D K.
A targeted contrast agent for magnetic resonance imaging of thrombus: implications
of spatial resolution.
J Magn Reson Imaging.
2001;
13
615-618
- 80
Wacker F K, Reither K, Ebert W, Wendt M, Lewin J S, Wolf K J.
MR Image-guided Endovascular Procedures with the Ultrasmall Superparamagnetic Iron
Oxide SH U 555 C as an Intravascular Contrast Agent: Study in Pigs.
Radiology.
2003;
226
459-464
- 81
Weishaupt D, Hilfiker P R, Schmidt M, Debatin J F.
Pulmonary hemorrhage: imaging with a new magnetic resonance blood pool agent in conjunction
with breathhold three-dimensional magnetic resonance angiography.
Cardiovasc Intervent Radiol.
1999;
22
321-325
- 82
Turetschek K, Huber S, Floyd E, Helbich T, Roberts T P, Shames D M, Tarlo K S, Wendland M F,
Brasch R C.
MR imaging characterization of microvessels in experimental breast tumors by using
a particulate contrast agent with histopathologic correlation.
Radiology.
2001;
218
562-569
- 83
Turetschek K, Huber S, Helbich T, Floyd E, Tarlo K S, Roberts T PL, Shames D M, Wendland M F,
Brasch R C.
Dynamic MRI enhanced with albumin-(Gd-DTPA)30 or ultrasmall superparamagnetic iron
oxide particles (NC100150 injection) for the measurement of microvessel permeability
in experimental breast tumors.
Acad Radiol.
2002;
9
(Suppl 1)
S 112-S 114
- 84
Turetschek K, Roberts T P, Floyd E, Preda A, Novikov V, Shames D M, Carter W O, Brasch R C.
Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide
particles (USPIO) in an experimental breast cancer model.
J Magn Reson Imaging.
2001;
13
882-888
- 85
Daldrup-Link H E, Brasch R C.
Macromolecular contrast agents for MR mammography: current status.
Eur Radiol.
2003;
13
354-365
- 86
Ichikawa T, Arbab A S, Araki T, Touyama K, Haradome H, Hachiya J, Yamaguchi M, Kumagai H,
Aoki S.
Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences: evaluation of tumor vascularity
in hepatocellular carcinoma.
Am J Roentgenol.
1999;
173
207-213
- 87
Rozenman Y, Zou X M, Kantor H L.
Magnetic resonance imaging with superparamagnetic iron oxide particles for the detection
of myocardial reperfusion.
Magn Reson Imaging.
1991;
9
933-939
- 88
Bjerner T, Johansson L, Ericsson A, Wirkstrom G, Hemmingsson A, Ahlstrom H.
First-pass myocardial perfusion MR imaging with outer-volume suppression and the intravascular
contrast agent NC100150 injection: preliminary results in eight patients.
Radiology.
2001;
221
822-826
- 89
Panting J R, Taylor A M, Gatehouse P D, Keegan J, Yang G Z, McGill S, Francis J M,
Burman E D, Firmin D N, Pennell D J.
First-pass myocardial perfusion imaging and equilibrium signal changes using the intravascular
contrast agent NC100150 injection.
J Magn Reson Imaging.
1999;
10
404-410
- 90
Bjerner T, Ericsson A, Wikstrom G, Johansson L, Nilsson S, Ahlstrom H, Hemmingsson A.
Evaluation of nonperfused myocardial ischemia with MRI and an intravascular USPIO
contrast agent in an ex vivo pig model.
J Magn Reson Imaging.
2000;
12
866-872
- 91
Weissleder R, Reimer P, Lee A S, Wittenberg J, Brady T J.
MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein
receptors.
Am J Roentgenol.
1990;
155
1161-1167
- 92
Schaffer B K, Linker C, Papisov M, Tsai E, Nossiff N, Shibata T, Bogdanov A, Brady T J,
Weissleder R.
MION-ASF: biokinetics of an MR receptor agent.
Magn Reson Imaging.
1993;
11
411-417
- 93
Reimer P, Weissleder R, Lee A S, Wittenberg J, Brady T J.
Receptor imaging: application to MR imaging of liver cancer.
Radiology.
1990;
177
729-734
- 94
Reimer P, Weissleder R, Brady T J, Yeager A E, Baldwin B H, Tennant B C, Wittenberg J.
Experimental hepatocellular carcinoma: MR receptor imaging.
Radiology.
1991;
180
641-645
- 95
Leveille-Webster C R, Rogers J, Arias I M.
Use of an asialoglycoprotein receptor-targeted magnetic resonance contrast agent to
study changes in receptor biology during liver regeneration and endotoxemia in rats.
Hepatology.
1996;
23
1631-1641
- 96
Reimer P, Weissleder R, Shen T, Knoefel W T, Brady T J.
Pancreatic receptors. Initial feasibility studies with a targeted contrast agent for
MR imaging.
Radiology.
1994;
193
527-531
- 97
Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W.
Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells
in vivo by using transferrin receptor pathways.
Magn Reson Med.
1998;
40
236-242
- 98
Schellenberger E A, Bogdanov A, Hogemann D, Tait J, Weissleder R, Josephson L.
Annexin V-CLIO: an nanoparticle for detecting apoptosis by MRI.
Molecular Imaging.
2002;
1
102-107
- 99
Zhang Y, Kohler N, Zhang M.
Intracellular uptake of poyl(ethylene glycol) and folic acid modified magnetite nanoparticles.
Mat Res Soc Symp Proceedings.
2002;
676
Y 981-Y 985
- 100
Cerdan S, Lotscher H R, Kunnecke B, Seelig J.
Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance
imaging of tumors.
Magn Reson Med.
1989;
12
151-163
- 101
Remsen L G, McCormick C I, Roman-Goldstein S, Nilaver G, Weissleder R, Bogdanov A,
Hellstrom I, Kroll R A, Neuweit E A.
MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide
nanoparticles: the potential for noninvasive diagnosis.
Am J Neuroradiol.
1996;
17
411-418
- 102
Weissleder R, Lee A S, Fischman A J, Reimer P, Shen T, Wilkinson R, Callahan R J,
Brady T J.
Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging.
Radiology.
191;
181
245-249
- 103
Weissleder R, Lee A S, Khaw B A, Shen T, Brady T J.
Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct:
MR antibody imaging.
Radiology.
1992;
182
381-385
- 104
Kang H W, Josephson L, Petrovsky A, Weissleder R, Bogdanov A.
Magnetic Resonance Imaging of Inducible E-Selectin Expression in Human Endothelial
Cell Culture.
Bioconjugate Chemistry.
2002;
13
122-127
- 105
Tiefenauer L X, Kuehne G, Andres R Y.
Antibody-magnetite nanoparticles: In vitro characterization of a potential tumor-specific
contrast agent for magnetic resonance imaging.
Bioconjugate Chemistry.
1993;
4
347-352
- 106
Suzuki M, Honda H, Kobayashi T, Wakabayashi T, Yoshida J, Takahashi M.
Development of a target-directed magnetic resonance contrast agent using monoclonal
antibody-conjugated magnetic particles.
Noshuyo Byori.
1996;
13
127-132
- 107
Suwa T, Ozawa S, Ueda M, Ando N, Kitajima M.
Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles
coated with anti-epidermal growth factor receptor antibody.
Int J Cancer.
1998;
75
626-634
- 108
Schulze E, Ferrucci J T, Poss K, Lapointe L, Bogdanova A, Weissleder R.
Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro.
Invest Radiol.
1995;
30
604-610
- 109
Weissleder R, Cheng H C, Bogdanova A, Bogdanova A J.
Magnetically labeled cells can be detected by MR imaging.
J Magn Reson Imaging.
1997;
7
258-263
- 110
Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, Zimmer C.
In Vitro Characterization of Two Different Ultrasmall Iron Oxide Particles for Magnetic
Resonance Cell Tracking.
Invest Radiol.
2002;
37
482-488
- 111
Franklin R J, Blaschuk K L, Bearchell M C, Prestoz L L, Setzu A, Brindle K M.
FrenchConstant C: Magnetic resonance imaging of transplanted oligodendrocyte precursors
in the rat brain.
Neuroreport.
1999;
10
3961-3965
- 112
Lewin M, Carlesso N, Tung C H, Tang X W, Cory D, Scadden D T, Weissleder R.
Tat peptide derivatized magnetic nanoparticles allow in vivo tracking and recovery
of progenitor cells.
Nature Biotechnology.
2000;
18
410-414
- 113
Bulte J WM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis B K, Zywicke H, Miller B,
van Gelderen P, Moskowitz B M, Duncan L D, Frank J A.
Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells.
Nature Biotechnology.
2001;
19
1141-1147
- 114
Bulte J WM, Duncan I D, Frank J A.
In vivo magnetic resonance tracking of magnetically labeled cells after transplantation.
J Cerebr Blood Flow Metabol.
2002;
22
899-907
- 115
Chan T W, Eley C, Liberti P, So A, Kressel H Y.
Magnetic resonance imaging of abscesses using lipid-coated iron oxide particles.
Invest Radiol.
1992;
27
443-449
- 116
Yeh T C, Zhang W, Ilstad S T, Ho C.
Intracellular labeling of T-cells with superparamagnetic contrast agents.
Magn Reson Med.
1993;
30
617-625
- 117
Krieg F M, Andres R Y, Winterhalter K H.
Superparamagnetically labelled neutrophils as potential abscess-specific contrast
agent for MRI.
Magn Reson Imaging.
1995;
13
393-400
- 118
Yeh T C, Zhang W, Ildstad S T, Ho C.
In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide
particles.
Magn Reson Med.
1995;
33
200-208
- 119
Lonnemark M, Hemmingsson A, Bach-Gansmo T, Ericsson A, Oksendal A, Nyman R, Moxnes A.
Effect of superparamagnetic particles as oral contrast medium at magnetic resonance
imaging. A phase I clinical study.
Acta Radiologica.
1989;
30
193-196
- 120
Briggs R W, Wu Z, Mladinich C RJ, Stoupis C, Gauger J, Liebig T, Ros P R, Ballinger J R,
Kubilis P.
In vivo animal tests of an artifact-free contrast agent for gastrointestinal MRI.
Magn Reson Imaging.
1997;
15
559-566
- 121
D'Arienzo A, Scaglione G, Vicinanza G, Manguso F, Bennato R, Belfiore G, Imbriaco M,
Mazzacca G.
Magnetic resonance imaging with ferumoxil, a negative superparamagnetic oral contrast
agent, in the evaluation of ulcerative colitis.
Am J Gastroenterol.
2000;
95
720-724
- 122
Pauser S, Reszka R, Wagner S, Wolf K J, Buhr H J, Berger G.
Liposome-encapsulated superparamagnetic iron oxide particles as markers in an MRI-guided
search for tumor-specific drug carriers.
Anti-Cancer Drug Design.
1997;
12
125-135
- 123
Kim D K, Zhang Y, Voit W, Rao K V, Kehr J, Bjelke B, Muhammed M.
Superparamagnetic iron oxide nanoparticles for bio-medical applications.
Scripta Materialia.
2001;
44
1713-1717
- 124
Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca E A, Basilion J P.
In vivo magnetic resonance imaging of transgene expression.
Nature Medicine.
2000;
6
351-354
- 125
Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C.
Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and
in vivo.
Gene Therapy.
2002;
9
102-109
- 126
von Ardenne M, Kirsch R.
(On the methodology of extreme hyperthermia, with special reference to multi-step
cancer chemotherapy).
Dtsch Gesundheitsw.
1965;
20
1935-1940 contd
- 127
Sako M, Hirota S.
Embolotherapy of hepatomas using ferromagnetic microspheres, its clinical evaluation
and the prospect of its use as a vehicle in chemoembolo-hyperthermic therapy.
Gan to Kagaku Ryoho (Japanese J Cancer Chemother).
1986;
13
1618-1624
- 128
Moroz P, Jones S K, Winter J, Gray B N.
Targeting liver tumors with hyperthermia: Ferromagnetic embolization in a rabbit liver
tumor model.
J Surg Oncol.
2001;
78
22-29
- 129
Moroz P, Jones S K, Gray B N.
Tumor response to arterial embolization hyperthermia and direct injection hyperthermia
in a rabbit liver tumor model.
J Surg Oncol.
2002;
80
149-156
- 130
Jung C W, Jacobs P.
Physical and chemical properties of superparamagnetic iron oxide MR contrast agents:
ferumoxides, ferumoxtran, ferumoxsil.
Magn Reson Imaging.
1995;
13
661-674
- 131
Tanimoto A, Yuasa Y, Hiramatsu K.
Enhancement of phase-contrast MR angiography with superparamagnetic iron oxide.
J Magn Reson Imaging.
1998;
8
446-450
- 132
Wagner S, Schnorr J, Pilgrim H, Hamm B, Taupitz M.
Monomer-coated very small superparamagnetic iron oxide particles as contrast medium
for magnetic resonance imaging: Preclinical in vivo characterization.
Invest Radiol.
2002;
37
167-177
Dr. med. Matthias Taupitz
Institut für Radiologie, Charité, Medizinische Fakultät der Humboldt-Universität zu
Berlin
Schumannstraße 20/21
10098 Berlin
Phone: + 49-30-450527032
Fax: + 49-30-450527922
Email: matthias.taupitz@charite.de