Abstract
The reaction of prop-1-ene-1,3-sultone (1 )
with a variety of nitrones 2 afforded novel [3+2] cycloaddition
products 3 , 4 ,
and 5 in good yield. Excellent regio- and
stereoselectivity were achieved in the cycloaddition reaction with
phenylnitrones.
Key words
cycloaddition - nitrone - sultone - regioselectivity - stereoselectivity
References
<A NAME="RF01303SS-1">1 </A>
Jang LS.
Chan WH.
Lee AWM.
Tetrahedron
1999,
55:
2245
<A NAME="RF01303SS-2">2 </A>
Bonini BF.
Kemperman G.
Willems STH.
Fochi M.
Mazzanti G.
Zwanenburg B.
Synlett
1998,
1411
<A NAME="RF01303SS-3">3 </A>
Goodwin BFJ.
Roberts DW.
Williams DL.
Johnson AW.
Immunotoxicology
Gibon GG.
Hubbard R.
Parke DV.
Academic
Press;
London:
1983.
p.443
<A NAME="RF01303SS-4">4 </A>
Tian L.
Xu GY.
Liu LZ.
Tetrahedron
2003, in
press
<A NAME="RF01303SS-5">5 </A>
Carl MD.
Philip DS.
J. Org. Chem.
1982,
47:
2047
<A NAME="RF01303SS-6">6 </A>
Bianchi G.
De Micheli C.
Gandolfi R.
Grunanger P.
VitaFinzi P.
De Pava OV.
J. Chem. Soc., Perkin
Trans. 1
1973,
1148
<A NAME="RF01303SS-7">7 </A>
Ali SkA.
Wazeer MIM.
J. Chem.
Soc., Perkin Trans. 2
1986,
1789
<A NAME="RF01303SS-8">8 </A>
The various substituted phenylnitrones 2a -l have
been widely employed as 1,3-dipoles. Three methods have been reported
for their preparation.
[9-11 ]
Two
routes (Method A and Method B) have been used by us (Scheme
[2 ]
). Method A has two steps.
In the first step, nitrobenzene was reduced by zinc dust and NH4 Cl
to phenylhydroxylamine by a modified literature procedure,
[12 ]
and was purified
by recrystallization. In the second step, the purified hydroxylamine
was mixed with an equimolar amount of benzaldehyde to give the corresponding
nitrones. Method B can be used to synthesize nitrones whose phenylhydroxylamines
were unstable and can not be separated as pure intermediates. In
Method B, the two steps used in Method A occur successively in one-pot. Cyclic
nitrones 2m and 2n were
prepared according to the reported procedures (Method C).
[7 ]
<A NAME="RF01303SS-9">9 </A>
Bruning I.
Grashey R.
Hauck H.
Huisgen R.
Seidl H.
Org. Synth., Coll. Vol. 5
Wiley;
New
York:
1973.
p.1124
<A NAME="RF01303SS-10">10 </A>
Cawkill E.
Clark NG.
J. Chem. Soc., Perkin
Trans. 1
1980,
244
<A NAME="RF01303SS-11">11 </A>
Buehler E.
J.
Org. Chem.
1967,
32:
261
<A NAME="RF01303SS-12">12 </A>
Kamm O.
Org. Synth . Coll.
Vol. 1
Wiley;
New York:
1951.
p.435
<A NAME="RF01303SS-13">13 </A>
Cusmano G.
Gazz.
Chim. Ital.
1921,
51:
308
<A NAME="RF01303SS-14">14 </A>
Boyland E.
Nery R.
J. Chem. Soc.
1963,
3141
<A NAME="RF01303SS-15">15 </A>
Nunno LD.
Scilimati A.
Tetrahedron
1991,
47:
4121
<A NAME="RF01303SS-16">16 </A>
Owen HW.
Peter HG.
J. Am. Chem. Soc.
1956,
78:
3363
<A NAME="RF01303SS-17">17 </A>
Woods GF.
J.
Am. Chem. Soc.
1947,
69:
2549
<A NAME="RF01303SS-18">18 </A>
Cawkill E.
Clark NG.
J. Chem. Soc., Perkin
Trans 1
1980,
244
<A NAME="RF01303SS-19">19 </A>
Among numerous synthetic methods,
[1 ]
[20 ]
[21 ]
two routes attracted
our attention. We repeated and improved the two methods [Method
D (Scheme
[3 ]
) and
Method E (Scheme
[4 ]
)].
<A NAME="RF01303SS-20A">20a </A>
King JF.
Mayo PD.
Melntosh CL.
Smith DJH.
Can. J. Chem.
1970,
48:
3704
<A NAME="RF01303SS-20B">20b </A>
Manecke G.
Danhäuser J.
Reich C.
Angew.
Chem.
1958,
70:
503
<A NAME="RF01303SS-21">21 </A>
Hellberger JH, and
Muller G. inventors; Ger. Patent 1146870.
; Chem . Abstr . 1963 , 59 , 1125