Z Gastroenterol 2003; 41(10): 1017-1032
DOI: 10.1055/s-2003-42924
Übersicht
© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Biologische Therapie chronisch-entzündlicher Darmerkrankungen

Biologic Therapy of Inflammatory Bowel DiseaseD. C. Baumgart1 , B. Wiedenmann1 , A. U. Dignass1
  • 1Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Interdisziplinäres Stoffwechselzentrum, Universitätsklinikum Charité, Campus Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin
Further Information

Publication History

Manuskript-Eingang: 28. März 2003

Annahme nach Revision: 17. April 2003

Publication Date:
16 October 2003 (online)

Zusammenfassung

Biologische Therapien bei der Behandlung der chronisch-entzündlichen Darmerkrankungen spiegeln den exponenziellen Wissenszuwachs über das menschliche Immunsystem und insbesondere über die Mechanismen von intestinalen Entzündungen in der letzten Dekade wider. Das bessere Verständnis der (Entzündungs-)Mechanismen chronisch-entzündlicher Darmerkrankungen ist das Ergebnis klinischer Forschung und der Untersuchungen an genetisch manipulierten Tiermodellen. Es hat großes Interesse an der Entwicklung und Erprobung neuer Medikamente mit neuartigen Wirkmechanismen hervorgerufen. Diese Übersicht gibt einen Überblick über die Wirkmechanismen von Biologika (Antikörper gegen proinflammatorische Zytokine, Antikörper gegen T-Zellen, antiinflammatorische Zytokine, Adhäsionsmolkülblocker, Wachstumsfaktoren, Hormone, koloniestimulierende Faktoren, Fusionsproteine, Antisense-Oligonukleotide, Trefoil-Peptide, immunostimulierende [ISS] DNS) bei chronisch-entzündlichen Darmerkrankungen. Die Daten sowohl zu etablierten biologischen Therapien als auch in Erprobung befindlicher Substanzen werden diskutiert. Probiotika finden kurze Erwähnung. Die besprochenen Daten lassen erwarten, dass Biologika eine wichtige Rolle bei der Behandlung chronisch-entzündlicher Darmerkrankungen in naher Zukunft spielen werden.

Abstract

Biological therapies in inflammatory bowel disease reflect the exponential advancement in understanding the human intestinal immune system and particularly the biology of intestinal inflammation during the past decade. The better understanding of the mechanisms of inflammatory bowel disease has evolved from desriptive clinical data and genetically engineered animal models. It led to great interest in the evaluation of a variety of new therapeutic agents with novel actions. This review will discuss the mechanisms of biologicals (antibodies against pro-inflammatory cytokines, T cell antibodies, anti-inflammtory cytokines, adhesion molecule blockers, growth factors, hormones, colony stimulating factors, fusion proteins, anti-sense oligonucleotides, trefoil peptides, immunostimulatory [ISS] DNA) used in the treatment of inflammatory bowel disease and summarizes the available data on established biologic therapies as well as investigational agents and briefly touch on probiotics. Based on the data discussed, it seems that biologicals will play an important role in managing inflammatory bowel disease in the near future.

Literatur

  • 1 Delves P J, Roitt I M. The immune system. First of two parts.  N Engl J Med. 2000;  343 37-49
  • 2 Delves P J, Roitt I M. The immune system. Second of two parts.  N Engl J Med. 2000;  343 108-117
  • 3 Parkin J, Cohen B. An overview of the immune system.  Lancet. 2001;  357 1777-1789
  • 4 Blumberg R S, Strober W. Prospects for research in inflammatory bowel disease.  JAMA. 2001;  285 643-647
  • 5 Baumgart D C, Dignass A U. Intestinal barrier function.  Curr Opin Clin Nutr Metab Care. 2002;  5 685-694
  • 6 Breedveld F C. Therapeutic monoclonal antibodies.  Lancet. 2000;  355 735-740
  • 7 Romagnani S. Th1/Th2 cells.  Inflammatory Bowel Diseases. 1999;  5 285-294
  • 8 Anonymus. I nterleukin-10. Cytokine synthesis inhibitory factor, SCH 52000, rIL-10, rhIL-10.  Drugs R D. 1999;  1 262-264
  • 9 Berg D J, Davidson N, Kuhn R. et al . Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses.  J Clin Invest. 1996;  98 1010-1020
  • 10 Davidson N J, Leach M W, Fort M M. et al . T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice.  J Exp Med. 1996;  184 241-251
  • 11 Duchmann R, Schmitt E, Knolle P. et al . Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12.  Eur J Immunol. 1996;  26 934-938
  • 12 Powrie F, Leach M W, Mauze S. et al . Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells.  Immunity. 1994;  1 553-562
  • 13 Rennick D M, Fort M M. Lessons from genetically engineered animal models - XII. IL-10-deficient (IL-10(-/-)) mice and intestinal inflammation.  American Journal of Physiology-Gastrointestinal and Liver Physiology. 2000;  278 G829-G833
  • 14 Autenrieth I B, Bucheler N, Bohn E. et al . Cytokine mRNA expression in intestinal tissue of interleukin-2 deficient mice with bowel inflammation.  Gut. 1997;  41 793-800
  • 15 Groux H, O’Garra A, Bigler M. et al . A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.  Nature. 1997;  389 737-742
  • 16 Berg D J, Zhang J, Weinstock J V. et al . Rapid development of colitis in NSAID-treated IL-10-deficient mice.  Gastroenterology. 2002;  123 1527-1542
  • 17 Kucharzik T, Stoll R, Lugering N. et al . Circulating antiinflammatory cytokine IL-10 in patients with inflammatory bowel disease (IBD).  Clin Exp Immunol. 1995;  100 452-456
  • 18 Niessner M, Volk B A. Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR).  Clin Exp Immunol. 1995;  101 428-435
  • 19 Meresse B, Rutgeerts P, Malchow H. et al . Low ileal interleukin 10 concentrations are predictive of endoscopic recurrence in patients with Crohn’s disease.  Gut. 2002;  50 25-28
  • 20 Schreiber S, Heinig T, Thiele H G. et al . Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease.  Gastroenterology. 1995;  108 1434-1444
  • 21 vanDeventer S JH, Elson C O, Fedorak R N. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease.  Gastroenterology. 1997;  113 383-389
  • 22 Fedorak R N, Gangl A, Elson C O. et al . Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease.  Gastroenterology. 2000;  119 1473-1482
  • 23 Gasche C, Bakos S, Dejaco C. et al . IL-10 secretion and sensitivity in normal human intestine and inflammatory bowel disease.  J Clin Immunol. 2000;  20 362-370
  • 24 Schreiber S, Fedorak R N, Nielsen O H. et al . Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease.  Gastroenterology. 2000;  119 1461-1472
  • 25 Schreiber S, Fedorak R N, Nielsen O H. et al . Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group.  Gastroenterology. 2000;  119 1461-1472
  • 26 Colombel J F, Rutgeerts P, Malchow H. et al . Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease.  Gut. 2001;  49 42-46
  • 27 Steidler L, Hans W, Schotte L. et al . Treatment of murine colitis by Lactococcus lactis secreting interleukin-10.  Science. 2000;  289 1352-1355
  • 28 Nakase H, Okazaki K, Tabata Y. et al . New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease.  J Pharmacol Exp Ther. 2002;  301 59-65
  • 29 Du X X, Williams D A. Interleukin-11: Review of molecular, cell biology, and clinical use.  Blood. 1997;  89 3897-3908
  • 30 Sitaraman S V, Gewirtz A T. Oprelvekin. Genetics Institute.  Curr Opin Investig Drugs. 2001;  2 1395-1400
  • 31 Keith J C Jr, Albert L, Sonis S T. et al . IL-11, a pleiotropic cytokine: exciting new effects of IL-11 on gastrointestinal mucosal biology.  Stem Cells. 1994;  12 Suppl 1 79-89
  • 32 Baumgart D C, Dignass A U. Intestinal barrier function.  Curr Opin Clin Nutr Metab Care. 2002;  5 685-694
  • 33 Qiu B S, Pfeiffer C J, Keith J C Jr. Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats.  Dig Dis Sci. 1996;  41 1625-1630
  • 34 Peterson R L, Wang L, Albert L. et al . Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease.  Lab Invest. 1998;  78 1503-1512
  • 35 Van Greenwood-Meerveld B, Tyler K, Keith J C Jr. Recombinant human interleukin-11 modulates ion transport and mucosal inflammation in the small intestine and colon.  Lab Invest. 2000;  80 1269-1280
  • 36 Sands B E, Bank S, Sninsky C A. et al . Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease.  Gastroenterology. 1999;  117 58-64
  • 37 Sands B E, Winston B D, Salzberg B. et al . Randomized, controlled trial of recombinant: human interleukin-11 in patients with active Crohn’s disease.  Alimentary Pharmacology & Therapeutics. 2002;  16 399-406
  • 38 Nikolaus S, Rutgeerts P, Fedorak R N. et al . Recombinant human interferon-beta (IFN-β-1 alpha) induces remission and is well tolerated in moderately active ulcerative colitis (UC).  Gastroenterology. 2001;  120 2312
  • 39 Musch E, Andus T, Malek M. Induction and maintenance of clinical remission by interferon-beta in patients with steroid-refractory active ulcerative colitis-an open long-term pilot trial.  Aliment Pharmacol Ther. 2002;  16 1233-1239
  • 40 Scallon B J, Moore M A, Trinh H. et al . Chimeric Anti-Tnf-Alpha Monoclonal-Antibody Ca2 Binds Recombinant Transmembrane Tnf-Alpha and Activates Immune Effector Functions.  Cytokine. 1995;  7 251-259
  • 41 Targan S R, Hanauer S B, vanDeventer S JH. et al . A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease.  New England Journal of Medicine. 1997;  337 1029-1035
  • 42 Papadakis K A, Targan S R. Tumor necrosis factor: Biology and therapeutic inhibitors.  Gastroenterology. 2000;  119 1148-1157
  • 43 Sands B E, Tremaine W J, Sandborn W J. et al . Infliximab in the treatment of severe, steroid-refractory ulcerative colitis: A pilot study.  Inflammatory Bowel Diseases. 2001;  7 83-88
  • 44 CDP 5 71. Anti-TNF monoclonal antibody, BAY 103356.  Drugs R D. 1999;  1 253-255
  • 45 Sandborn W J, Feagan B G, Hanauer S B. et al . An engineered human antibody to TNF (CDP571) for active Crohn’s disease: A randomized double-blind placebo-controlled trial.  Gastroenterology. 2001;  120 1330-1338
  • 46 Stack W A, Mann S D, Roy A J. et al . Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease.  Lancet. 1997;  349 521-524
  • 47 Feagan B G, Sandborn W J, Baker J P. et al . A randomized, double-blind, placebo-controlled, multi-center trial of the engineered human antibody to TNF (CDP571) for steroid sparing and maintenance of remission in patients with steroid-dependent Crohn’s disease.  Gastroenterology. 2000;  118 3599
  • 48 Sandborn W J, Feagan B G, Hanauer S B. et al . An engineered human antibody to TNF (CDP571) for active Crohn’s disease: a randomized double-blind placebo-controlled trial.  Gastroenterology. 2001;  120 1330-1338
  • 49 Evans R C, Clarke L, Heath P. et al . Treatment of ulcerative colitis with an engineered human anti-TNF-α antibody CDP571.  Alimentary Pharmacology & Therapeutics. 1997;  11 1031-1035
  • 50 Brown S L, Greene M H, Gershon S K. et al . Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration.  Arthritis Rheum. 2002;  46 3151-3158
  • 51 Sandborn W J, Hanauer S B. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety.  Inflamm Bowel Dis. 1999;  5 119-133
  • 52 Anonymus. E tanercept. Soluble tumour necrosis factor receptor, TNF receptor fusion protein, TNFR-Fc, TNR 001, Enbrel.  Drugs R D. 1999;  1 258-261
  • 53 Nash C L, Panaccione R, Sutherland L R. et al . Giant cell myocarditis, in a patient with Crohn’s disease, treated with etanercept - a tumour necrosis factor-alpha antagonist.  Can J Gastroenterol. 2001;  15 607-611
  • 54 Zeltser R, Valle L, Tanck C. et al . Clinical, histological, and immunophenotypic characteristics of injection site reactions associated with etanercept: a recombinant tumor necrosis factor alpha receptor: Fc fusion protein.  Arch Dermatol. 2001;  137 893-899
  • 55 Marzo-Ortega H, McGonagle D, O’Connor P. et al . Efficacy of etanercept for treatment of Crohn’s related spondyloarthritis but not colitis.  Ann Rheum Dis. 2003;  62 74-76
  • 56 D’Haens G, Swijsen C, Noman M. et al . Etanercept in the treatment of active refractory Crohn’s disease: A single-center pilot trial.  American Journal of Gastroenterology. 2001;  96 2564-2568
  • 57 Sandborn W J, Hanauer S B, Katz S. et al . Etanercept for active Crohn’s disease: A randomized, double-blind, placebo-controlled trial.  Gastroenterology. 2001;  121 1088-1094
  • 58 Srivastava M D. Immunomodulatory effects of etanercept (TNFR: Fc) and its use in a patient with Crohn’s disease.  Res Commun Mol Pathol Pharmacol. 2001;  109 125-141
  • 59 Trinchard-Lugan I, Ho-Nguyen Q, Bilham W M. et al . Safety, pharmacokinetics and pharmacodynamics of recombinant human tumour necrosis factor-binding protein-1 (Onercept) injected by intravenous, intramuscular and subcutaneous routes into healthy volunteers.  Eur Cytokine Netw. 2001;  12 391-398
  • 60 Rutgeerts P, Lemmens L, Van Assche G. et al . Recombinant soluble p55 TNF receptor induces remission, is non-immunogenic and well tolerated in active Crohn’s disease: Results of a randomized pilot trial.  Gastroenterology. 2001;  120 2304
  • 61 Bjork L, Tracey K J, Ulrich P. et al . Targeted suppression of cytokine production in monocytes but not in T lymphocytes by a tetravalent guanylhydrazone (CNI-1493).  J Infect Dis. 1997;  176 1303-1312
  • 62 Tracey K J. Suppression of TNF and other proinflammatory cytokines by the tetravalent guanylhydrazone CNI-1493.  Prog Clin Biol Res. 1998;  397 335-343
  • 63 Bianchi M, Ulrich P, Bloom O. et al . An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality.  Mol Med. 1995;  1 254-266
  • 64 Cohen P S, Nakshatri H, Dennis J. et al . CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency.  Proc Natl Acad Sci U S A. 1996;  93 3967-3971
  • 65 Hunt A E, Lali F V, Lord J D. et al . Role of interleukin (IL)-2 receptor beta-chain subdomains and Shc in p38 mitogen-activated protein (MAP) kinase and p54 MAP kinase (stress-activated protein Kinase/c-Jun N-terminal kinase) activation. IL-2-driven proliferation is independent of p38 and p54 MAP kinase activation.  J Biol Chem. 1999;  274 7591-7597
  • 66 Denham W, Yang J, Wang H. et al . Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome.  Crit Care Med. 2000;  28 2567-2572
  • 67 Lee J C, Kumar S, Griswold D E. et al . Inhibition of p38 MAP kinase as a therapeutic strategy.  Immunopharmacology. 2000;  47 185-201
  • 68 Salituro F G, Germann U A, Wilson K P. et al . Inhibitors of p38 MAP kinase: Therapeutic intervention in cytokine-mediated diseases.  Current Medicinal Chemistry. 1999;  6 807-823
  • 69 Amiot F, Fitting C, Tracey K J. et al . Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha/TNF-α-deficient mice.  Mol Med. 1997;  3 864-875
  • 70 Martiney J A, Rajan A J, Charles P C. et al . Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent.  J Immunol. 1998;  160 5588-5595
  • 71 Yang J, Denham W, Tracey K J. et al . The physiologic consequences of macrophage pacification during severe acute pancreatitis.  Shock. 1998;  10 169-175
  • 72 Yang J, Denham W, Carter G. et al . Macrophage pacification reduces rodent pancreatitis-induced hepatocellular injury through down-regulation of hepatic tumor necrosis factor alpha and interleukin-1beta.  Hepatology. 1998;  28 1282-1288
  • 73 Yang X, Szabolcs M, Minanov O. et al . CNI-1493 prolongs survival and reduces myocyte loss, apoptosis, and inflammation during rat cardiac allograft rejection.  J Cardiovasc Pharmacol. 1998;  32 146-155
  • 74 D’Souza M J, Oettinger C W, Milton G V. et al . Prevention of lethality and suppression of proinflammatory cytokines in experimental septic shock by microencapsulated CNI-1493.  J Interferon Cytokine Res. 1999;  19 1125-1133
  • 75 Kerlund K, Erlandsson H H, Tracey K J. et al . Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-α) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats.  Clin Exp Immunol. 1999;  115 32-41
  • 76 Granert C, Abdalla H, Lindquist L. et al . Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic Haemophilus influenzae infection.  Infect Immun. 2000;  68 5329-5334
  • 77 Palmblad K, Erlandsson-Harris H, Tracey K J. et al . Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis : a therapeutic study using a macrophage-deactivating compound.  Am J Pathol. 2001;  158 491-500
  • 78 Atkins M B, Redman B, Mier J. et al . A phase I study of CNI-1493, an inhibitor of cytokine release, in combination with high-dose interleukin-2 in patients with renal cancer and melanoma.  Clin Cancer Res. 2001;  7 486-492
  • 79 Hommes D, Van Den Blink B, Plasse T. et al . Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease.  Gastroenterology. 2002;  122 7-14
  • 80 Thalidomide - a possible alternative as an immunomodulating agent].  Lakartidningen. 1989;  86 4260-4262
  • 81 Sands B E, Podolsky D K. New life in a sleeper: thalidomide and Crohn’s disease.  Gastroenterology. 1999;  117 1485-1488
  • 82 De Cock K M. Treatment of ulcerative colitis.  Br Med J. 1979;  1 1356
  • 83 Waters M F, Laing A B, Ambikapathy A. et al . Treatment of ulcerative colitis with thalidomide.  Br Med J. 1979;  1 792
  • 84 Odeka E B, Miller V. Thalidomide in oral Crohn’s disease refractory to conventional medical treatment.  J Pediatr Gastroenterol Nutr. 1997;  25 250-251
  • 85 Wettstein A R, Meagher A P. Thalidomide in Crohn’s disease.  Lancet. 1997;  350 1445-1446
  • 86 Weinstein T A, Sciubba J J, Levine J. Thalidomide for the treatment of oral aphthous ulcers in Crohn’s disease.  J Pediatr Gastroenterol Nutr. 1999;  28 214-216
  • 87 Ginsburg P M, Hanan I, Ehrenpreis E D. Treatment of severe esophageal Crohn’s disease with thalidomide.  Am J Gastroenterol. 2001;  96 1305-1306
  • 88 Generini S, Fiori G, Matucci C M. Therapy of spondylarthropathy in inflammatory bowel disease.  Clin Exp Rheumatol. 2002;  20 S88-S94
  • 89 Kane S, Stone L J, Ehrenpreis E. Thalidomide as ”salvage” therapy for patients with delayed hypersensitivity response to infliximab: a case series.  J Clin Gastroenterol. 2002;  35 149-150
  • 90 Vasiliauskas E A, Kam L Y, Abreu-Martin M T. et al . An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent Crohn’s disease.  Gastroenterology. 1999;  117 1278-1287
  • 91 Ehrenpreis E D, Kane S V, Cohen L B. et al . Thalidomide therapy for patients with refractory Crohn’s disease: An open-label trial.  Gastroenterology. 1999;  117 1271-1277
  • 92 Pare P. Management of fistulas in patients with Crohn’s disease: antibiotic to antibody.  Can J Gastroenterol. 2001;  15 751-756
  • 93 Sabate J M, Villarejo J, Lemann M. et al . An open-label study of thalidomide for maintenance therapy in responders to infliximab in chronically active and fistulizing refractory Crohn’s disease.  Aliment Pharmacol Ther. 2002;  16 1117-1124
  • 94 Lantz M, Thysell H, Nilsson E. et al . On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin.  J Clin Invest. 1991;  88 2026-2031
  • 95 Gaffney P R, Doyle C T, Gaffney A. et al . Paradoxical response to heparin in 10 patients with ulcerative colitis.  Am J Gastroenterol. 1995;  90 220-223
  • 96 Folwaczny C, Wiebecke B, Loeschke K. Unfractioned heparin in the therapy of patients with highly active inflammatory bowel disease.  Am J Gastroenterol. 1999;  94 1551-1555
  • 97 Torkvist L, Thorlacius H, Sjoqvist U. et al . Low molecular weight heparin as adjuvant therapy in active ulcerative colitis.  Aliment Pharmacol Ther. 1999;  13 1323-1328
  • 98 Ang Y S, Mahmud N, White B. et al . Randomized comparison of unfractionated heparin with corticosteroids in severe active inflammatory bowel disease.  Aliment Pharmacol Ther. 2000;  14 1015-1022
  • 99 Dotan I, Hallak A, Arber N. et al . Low-dose low-molecular weight heparin (enoxaparin) is effective as adjuvant treatment in active ulcerative colitis: an open trial.  Dig Dis Sci. 2001;  46 2239-2244
  • 100 Vrij A A, Jansen J M, Schoon E J. et al . Low molecular weight heparin treatment in steroid refractory ulcerative colitis: clinical outcome and influence on mucosal capillary thrombi.  Scand J Gastroenterol Suppl. 2001;  41-47
  • 101 Prajapati D N, Newcomer J R, Emmons J. et al . Successful treatment of an acute flare of steroid-resistant Crohn’s colitis during pregnancy with unfractionated heparin.  Inflamm Bowel Dis. 2002;  8 192-195
  • 102 Fuss I J, Marth T, Neurath M F. et al . Anti-interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice.  Gastroenterology. 1999;  117 1078-1088
  • 103 Groux H, OGarra A, Bigler M. et al . A CD4(+) T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.  Nature. 1997;  389 737-742
  • 104 Duchmann R, Schmitt E, Knolle P. et al . Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12.  European Journal of Immunology. 1996;  26 934-938
  • 105 Camoglio L, Juffermans N P, Peppelenbosch M. et al . Contrasting roles of IL-12p40 and IL-12p35 in the development of hapten-induced colitis.  Eur J Immunol. 2002;  32 261-269
  • 106 Dinarello C A. Interleukin-18, a proinflammatory cytokine.  Eur Cytokine Netw. 2000;  11 483-486
  • 107 Chikano S, Sawada K, Shimoyama T. et al . IL-18 and IL-12 induce intestinal inflammation and fatty liver in mice in an IFN-γ dependent manner.  Gut. 2000;  47 779-786
  • 108 Monteleone G, Trapasso F, Parrello T. et al . Bioactive IL-18 expression is up-regulated in Crohn’s disease.  J Immunol. 1999;  163 143-147
  • 109 Pizarro T T, Michie M H, Bentz M. et al . IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells.  J Immunol. 1999;  162 6829-6835
  • 110 Kanai T, Watanabe M, Okazawa A. et al . Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn’s disease.  Gastroenterology. 2000;  119 1514-1523
  • 111 Kanai T, Watanabe M, Okazawa A. et al . Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn’s disease.  Gastroenterology. 2001;  121 875-888
  • 112 ten H ove T, Corbaz A, Amitai H. et al . Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice.  Gastroenterology. 2001;  121 1372-1379
  • 113 Sivakumar P V, Westrich G M, Kanaly S. et al . Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage.  Gut. 2002;  50 812-820
  • 114 Wirtz S, Becker C, Blumberg R. et al . Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA.  J Immunol. 2002;  168 411-420
  • 115 Holmes S, Abrahamson J A, Al M ahdi N. et al . Characterization of the in vitro and in vivo activity of monoclonal antibodies to human IL-18.  Hybridoma. 2000;  19 363-367
  • 116 von Andrian U H, Engelhardt B. Alpha4 integrins as therapeutic targets in autoimmune disease.  N Engl J Med. 2003;  348 68-72
  • 117 Podolsky D K, Lobb R, King N. et al . Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody.  J Clin Invest. 1993;  92 372-380
  • 118 Hesterberg P E, Winsor-Hines D, Briskin M J. et al . Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7.  Gastroenterology. 1996;  111 1373-1380
  • 119 Sheremata W A, Vollmer T L, Stone L A. et al . A safety and pharmacokinetic study of intravenous natalizumab in patients with MS.  Neurology. 1999;  52 1072-1074
  • 120 Tubridy N, Behan P O, Capildeo R. et al . The effect of anti-alpha4 integrin antibody on brain lesion activity in MS.  The UK Antegren Study Group. Neurology. 1999;  53 466-472
  • 121 Miller D H, Khan O A, Sheremata W A. et al . A controlled trial of natalizumab for relapsing multiple sclerosis.  N Engl J Med. 2003;  348 15-23
  • 122 Gordon F H, Lai C WY, Hamilton M I. et al . A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha 4 integrin in active Crohn’s disease.  Gastroenterology. 2001;  121 268-274
  • 123 Gordon F H, Hamilton M I, Donoghue S. et al . A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin.  Aliment Pharmacol Ther. 2002;  16 699-705
  • 124 Ghosh S, Goldin E, Gordon F H. et al . Natalizumab for active Crohn’s disease.  N Engl J Med. 2003;  348 24-32
  • 125 Marshall J K. LDP-02 (Millenium).  Curr Opin Investig Drugs. 2001;  2 502-504
  • 126 Hesterberg P E, WinsorHines D, Briskin M J. et al . Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7.  Gastroenterology. 1996;  111 1373-1380
  • 127 Feagan B G, McDonald J, Greenberg G. et al . An ascending dose trial of a humanized A(4)B(7) antibody in ulcerative colitis (UC).  Gastroenterology. 2000;  118 4851
  • 128 Askari F K, McDonnell W M. Molecular medicine - Antisense oligonucleotide therapy.  New England Journal of Medicine. 1996;  334 316-318
  • 129 ISIS 2 302. Oligo-TCS.  Drugs R D. 1999;  1 265-267
  • 130 Yacyshyn B R, Bowen-Yacyshyn M B, Jewell L. et al . A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease.  Gastroenterology. 1998;  114 1133-1142
  • 131 Gewirtz A T, Sitaraman S. Alicaforsen. Isis Pharmaceuticals.  Curr Opin Investig Drugs. 2001;  2 1401-1406
  • 132 Yacyshyn B R, Chey W Y, Goff J. et al . Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease.  Gut. 2002;  51 30-36
  • 133 Schreiber S, Nikolaus S, Malchow H. et al . Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease.  Gastroenterology. 2001;  120 1339-1346
  • 134 Yacyshyn B R, Chey W Y, Goff J. et al . A randomized, placebo-controlled trial of an antisense ICAM-1 inhibitor (ISIS 2302) in steroid-dependent Crohn’s disease showed clinical improvement at high serum levels.  Gastroenterology. 2001;  120 1447
  • 135 Choy E H, Chikanza I C, Kingsley G H. et al . Treatment of rheumatoid arthritis with single dose or weekly pulses of chimaeric anti-CD4 monoclonal antibody.  Scand J Immunol. 1992;  36 291-298
  • 136 Dalesandro M R, Pak K Y, Tam S. et al . Effects of isotype and Fc region on in vitro function of a mouse/human chimeric CD4 antibody.  Int Immunol. 1993;  5 283-291
  • 137 Jonker M, Slingerland W, Treacy G. et al . In vivo treatment with a monoclonal chimeric anti-CD4 antibody results in prolonged depletion of circulating CD4+ cells in chimpanzees.  Clin Exp Immunol. 1993;  93 301-307
  • 138 Moreland L W, Pratt P W, Sanders M E. et al . Experience with a chimeric monoclonal anti-CD4 antibody in the treatment of refractory rheumatoid arthritis.  Clin Exp Rheumatol. 1993;  11 Suppl 8 S153-S159
  • 139 van der Lubbe P A, Reiter C, Breedveld F C. et al . Chimeric CD4 monoclonal antibody cM-T412 as a therapeutic approach to rheumatoid arthritis.  Arthritis Rheum. 1993;  36 1375-1379
  • 140 Ahlberg R, Yi Q, Pirskanen R. et al . Treatment of myasthenia gravis with anti-CD4 antibody: improvement correlates to decreased T-cell autoreactivity.  Neurology. 1994;  44 1732-1737
  • 141 Lindsey J W, Hodgkinson S, Mehta R. et al . Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis.  Ann Neurol. 1994;  36 183-189
  • 142 Lindsey J W, Hodgkinson S, Mehta R. et al . Phase 1 clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis.  Neurology. 1994;  44 413-419
  • 143 Meiser B M, Reiter C, Reichenspurner H. et al . Chimeric monoclonal CD4 antibody - a novel immunosuppressant for clinical heart transplantation.  Transplantation. 1994;  58 419-423
  • 144 Prinz J C, Meurer M, Reiter C. et al . Treatment of severe cutaneous lupus erythematosus with a chimeric CD4 monoclonal antibody, cM-T412.  J Am Acad Dermatol. 1996;  34 244-252
  • 145 Llewellyn-Smith N, Lai M, Miller D H. et al . Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumor necrosis factor alpha production: a study of 29 multiple sclerosis patients entered into a clinical trial of cM-T412.  Neurology. 1997;  48 810-816
  • 146 Stronkhorst A, Radema S, Yong S L. et al . CD4 antibody treatment in patients with active Crohn’s disease: a phase 1 dose finding study.  Gut. 1997;  40 320-327
  • 147 Moreland L W, Pratt P W, Bucy R P. et al . Treatment of refractory rheumatoid arthritis with a chimeric anti-CD4 monoclonal antibody. Long-term followup of CD4+ T cell counts.  Arthritis Rheum. 1994;  37 834-838
  • 148 Rep M H, van Oosten B W, Roos M T. et al . Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-γ secreting TH1 cells in humans.  J Clin Invest. 1997;  99 2225-2231
  • 149 Lopez E, Racadot E, Bataillard M. et al . Interferon gamma, IL2, IL4, IL10 and TNFalpha secretions in multiple sclerosis patients treated with an anti-CD4 monoclonal antibody.  Autoimmunity. 1999;  29 87-92
  • 150 Rohde M, Schenk J A, Heymann S. et al . Production and characterization of monoclonal antibodies against urea derivatives.  Appl Biochem Biotechnol. 1998;  75 129-137
  • 151 Rumbach L, Racadot E, Armspach J P. et al . Biological assessment and MRI monitoring of the therapeutic efficacy of a monoclonal anti-T CD4 antibody in multiple sclerosis patients.  Mult Scler. 1996;  1 207-212
  • 152 CanvaDelcambre V, Jacquot S, Robinet E. et al . Treatment of severe Crohn’s disease with anti-CD4 monoclonal antibody.  Alimentary Pharmacology & Therapeutics. 1996;  10 721-727
  • 153 Horneff G, Guse A H, Schulze-Koops H. et al . Human CD4 modulation in vivo induced by antibody treatment.  Clin Immunol Immunopathol. 1993;  66 80-90
  • 154 Wang J, Yan T, Simmer B. et al . The effect of anti-CD4 on helper function of CD4,45RA+ versus CD4,45RO+ T cells.  Clin Exp Immunol. 1994;  95 128-134
  • 155 Horneff G, Dirksen U, Schulze-Koops H. et al . Treatment of refractory juvenile chronic arthritis by monoclonal CD4 antibodies: a pilot study in two children.  Ann Rheum Dis. 1995;  54 846-849
  • 156 Brink I, Thiele B, Burmester G R. et al . Effects of anti-CD4 antibodies on the release of IL-6 and TNF-α in whole blood samples from patients with systemic lupus erythematosus.  Lupus. 1999;  8 723-730
  • 157 Laub R, Brecht R, Dorsch M. et al . Anti-human CD4 induces peripheral tolerance in a human CD4+, murine CD4-, HLA-DR+ advanced transgenic mouse model.  J Immunol. 2002;  169 2947-2955
  • 158 Guse A H, Tsygankov A Y, Broker B M. et al . Signal transduction in T lymphocytes and monocytes: effects of the anti-CD4 antibody MAX.16H5.  Year Immunol. 1993;  7 175-181
  • 159 Emmrich J, Seyfarth M, Liebe S. et al . Anti-Cd4-Antibody Treatment in Inflammatory Bowel-Disease Without A Long Cd4+-Cell Depletion.  Gastroenterology. 1995;  108 A815
  • 160 Emmrich J, Seyfarth M, Fleig W E. et al . Treatment of inflammatory bowel disease with anti-CD4 monoclonal antibody.  Lancet. 1991;  338 570-571
  • 161 Wright N A, Pike C, Elia G. Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells.  Nature. 1990;  343 82-85
  • 162 Alexander R J, Panja A, Kaplan-Liss E. et al . Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease.  Dig Dis Sci. 1995;  40 485-494
  • 163 Chowdhury A, Fukuda R, Fukumoto S. Growth factor mRNA expression in normal colorectal mucosa and in uninvolved mucosa from ulcerative colitis patients.  J Gastroenterol. 1996;  31 353-360
  • 164 Malecka-Panas E, Kordek R, Biernat W. et al . Differential activation of total and EGF receptor (EGF-R) tyrosine kinase (tyr-k) in the rectal mucosa in patients with adenomatous polyps, ulcerative colitis and colon cancer.  Hepatogastroenterology. 1997;  44 435-440
  • 165 Hall F L, Kaiser A, Liu L. et al . Design, expression, and renaturation of a lesion-targeted recombinant epidermal growth factor-von Willebrand factor fusion protein: efficacy in an animal model of experimental colitis.  Int J Mol Med. 2000;  6 635-643
  • 166 Banan A, Fields J Z, Talmage D A. et al . PKC-zeta is required in EGF protection of microtubules and intestinal barrier integrity against oxidant injury.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 G794-G808
  • 167 Sinha A, Nightingale J M, West K P. et al . Epidermal growth factor enemas are effective in the treatment of left-sided ulcerative colitis.  Gastroenterology. 2001;  120 55
  • 168 Beck P L, Podolsky D K. Growth factors in inflammatory bowel disease.  Inflammatory Bowel Diseases. 1999;  5 44-60
  • 169 Dignass A U, Sturm A. Peptide growth factors in the intestine.  Eur J Gastroenterol Hepatol. 2001;  13 763-770
  • 170 Brauchle M, Madlener M, Wagner A D. et al . Keratinocyte growth factor is highly overexpressed in inflammatory bowel disease.  Am J Pathol. 1996;  149 521-529
  • 171 Finch P W, Pricolo V, Wu A. et al . Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease.  Gastroenterology. 1996;  110 441-451
  • 172 Bajaj-Elliott M, Breese E, Poulsom R. et al . Keratinocyte growth factor in inflammatory bowel disease. Increased mRNA transcripts in ulcerative colitis compared with Crohn’s disease in biopsies and isolated mucosal myofibroblasts.  Am J Pathol. 1997;  151 1469-1476
  • 173 Han D S, Li F L, Holt L. et al . Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats.  American Journal of Physiology-Gastrointestinal and Liver Physiology. 2000;  279 G1011-G1022
  • 174 Miceli R, Hubert M, Santiago G. et al . Efficacy of keratinocyte growth factor-2 in dextran sulfate sodium-induced murine colitis.  Journal of Pharmacology and Experimental Therapeutics. 1999;  290 464-471
  • 175 Werner S. Keratinocyte growth factor: A unique player in epithelial repair processes.  Cytokine & Growth Factor Reviews. 1998;  9 153-165
  • 176 Dignass A U. Mechanisms and modulation of intestinal epithelial repair.  Inflamm Bowel Dis. 2001;  7 68-77
  • 177 Poulsom R, Chinery R, Sarraf C. et al . Trefoil peptide expression in intestinal adaptation and renewal.  Scand J Gastroenterol Suppl. 1992;  192 17-28
  • 178 Dignass A, Lynch-Devaney K, Kindon H. et al . Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway.  J Clin Invest. 1994;  94 376-383
  • 179 Dignass A U, Sturm A. Peptide growth factors in the intestine.  Eur J Gastroenterol Hepatol. 2001;  13 763-770
  • 180 Byrne F R, Farrell C L, Aranda R. et al . rHuKGF ameliorates symptoms in DSS and CD4(+)CD45RB(Hi) T cell transfer mouse models of inflammatory bowel disease.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 G690-G701
  • 181 McCaffery T D, Nasr K, Lawrence A M. et al . Severe growth retardation in children with inflammatory bowel disease.  Pediatrics. 1970;  45 386-393
  • 182 Gotlin R W, Dubois R S. Nyctohemeral growth hormone levels in children with growth retardation and inflammatory bowel disease.  Gut. 1973;  14 191-195
  • 183 McCaffery T D Jr, Nasr K, Lawrence A M. et al . Effect of administered human growth hormone on growth retardation in inflammatory bowel disease.  Am J Dig Dis. 1974;  19 411-416
  • 184 Green J R, O’Donoghue D P, Edwards C R. et al . A case of apparent hypopituitarism complicating chronic inflammatory bowel disease in childhood and adolescence.  Acta Paediatr Scand. 1977;  66 643-647
  • 185 Tenore A, Berman W F, Parks J S. et al . Basal and stimulated serum growth hormone concentrations in inflammatory bowel disease.  J Clin Endocrinol Metab. 1977;  44 622-628
  • 186 Kirschner B S, Voinchet O, Rosenberg I H. Growth retardation in inflammatory bowel disease.  Gastroenterology. 1978;  75 504-511
  • 187 Kelts D G, Grand R J, Shen G. et al . Nutritional basis of growth failure in children and adolescents with Crohn’s disease.  Gastroenterology. 1979;  76 720-727
  • 188 Henker J. Therapy with recombinant growth hormone in children with Crohn disease and growth failure.  Eur J Pediatr. 1996;  155 1066-1067
  • 189 Kotake M, Nakai A, Mokuno T. et al . Short stature due to growth hormone deficiency associated with Cushing’s disease and ulcerative colitis.  Horm Metab Res. 1996;  28 565-569
  • 190 Chen K, Nezu R, Inoue M. et al . Beneficial effects of growth hormone combined with parenteral nutrition in the management of inflammatory bowel disease: an experimental study.  Surgery. 1997;  121 212-218
  • 191 Jensen M B, Kissmeyer-Nielsen P, Laurberg S. Perioperative growth hormone treatment increases nitrogen and fluid balance and results in short-term and long-term conservation of lean tissue mass.  Am J Clin Nutr. 1998;  68 840-846
  • 192 Mauras N. Growth hormone therapy in the glucocorticosteroid-dependent child: metabolic and linear growth effects.  Horm Res. 2001;  56 (Suppl 1) 13-18
  • 193 Mauras N, George D, Evans J. et al . Growth hormone has anabolic effects in glucocorticosteroid-dependent children with inflammatory bowel disease: a pilot study.  Metabolism. 2002;  51 127-135
  • 194 Williams K L, Fuller C R, Dieleman L A. et al . Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone.  Gastroenterology. 2001;  120 925-937
  • 195 Slonim A E, Bulone L, Damore M B. et al . A preliminary study of growth hormone therapy for Crohn’s disease.  New England Journal of Medicine. 2000;  342 1633-1637
  • 196 Vaughan D, Drumm B. Treatment of fistulas with granulocyte colony-stimulating factor in a patient with Crohn’s disease.  New England Journal of Medicine. 1999;  340 239-240
  • 197 Korzenik J R, Dieckgraefe B K. Immunostimulation in Crohn’s disease: Results of a pilot study of G-CSF (R-methug-CSF) in mucosal and fistulizing Crohn’s disease.  Gastroenterology. 2000;  118 4852
  • 198 Korzenik J R, Dieckgraefe B K. Immune stimulation in Crohn’s disease: Safety and efficacy of rhuGM-CSF for the treatment of active Crohn’s disease.  Gastroenterology. 2001;  120 1437
  • 199 Dieckgraefe B K, Korzenik J R. Treatment of active Crohn’s disease with recombinant human granulocyte-macrophage colony-stimulating factor.  Lancet. 2002;  360 1478-1480
  • 200 Galloway M J, Mackie M J, McVerry B A. Reduced levels of factor XIII in patients with chronic inflammatory bowel disease.  Clin Lab Haematol. 1983;  5 427-428
  • 201 Wisen O, Gardlund B. Hemostasis in Crohn’s disease: low factor XIII levels in active disease.  Scand J Gastroenterol. 1988;  23 961-966
  • 202 Suzuki R, Toda H, Takamura Y. Dynamics of blood coagulation factor XIII in ulcerative colitis and preliminary study of the factor XIII concentrate.  Blut. 1989;  59 162-164
  • 203 Lorenz R, Heinmuller M, Classen M. et al . Substitution of factor XIII: a therapeutic approach to ulcerative colitis.  Haemostasis. 1991;  21 5-9
  • 204 Stadnicki A, Kloczko J, Nowak A. et al . Factor XIII subunits in relation to some other hemostatic parameters in ulcerative colitis.  Am J Gastroenterol. 1991;  86 690-693
  • 205 Oshitani N, Nakamura S, Matsumoto T. et al . Treatment of Crohn’s disease fistulas with coagulation factor XIII.  Lancet. 1996;  347 119-120
  • 206 Chamouard P, Grunebaum L, Wiesel M L. et al . Significance of diminished factor XIII in Crohn’s disease.  Am J Gastroenterol. 1998;  93 610-614
  • 207 Cario E, Goebell H, Dignass A U. Factor XIII modulates intestinal epithelial wound healing in vitro.  Scand J Gastroenterol. 1999;  34 485-490
  • 208 Pihusch R, Salat C, Gohring P. et al . Factor XIII activity levels in patients with allogeneic haematopoietic stem cell transplantation and acute graft-versus-host disease of the gut.  Br J Haematol. 2002;  117 469-476
  • 209 Bregenzer N, Caesar I, Andus T. et al . Lack of clinical efficacy of additional factor XIII treatment in patients with steroid refractory colitis. The Factor XIII Study Group.  Z Gastroenterol. 1999;  37 999-1004
  • 210 Forestier C, De Champs C, Vatoux C. et al . Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties.  Res Microbiol. 2001;  152 167-173
  • 211 Rembacken B J, Snelling A M, Hawkey P M. et al . Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial.  Lancet. 1999;  354 635-639
  • 212 McFarland L V, Surawicz C M, Greenberg R N. et al . A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease.  JAMA. 1994;  271 1913-1918
  • 213 Surawicz C M, McFarland L V, Elmer G. et al . Treatment of recurrent Clostridium difficile colitis with vancomycin and Saccharomyces boulardii.  Am J Gastroenterol. 1989;  84 1285-1287
  • 214 Surawicz C M, Elmer G W, Speelman P. et al . Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study.  Gastroenterology. 1989;  96 981-988
  • 215 McFarland L V, Elmer G W, Surawicz C M. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease.  Am J Gastroenterol. 2002;  97 1769-1775
  • 216 Surawicz C M, Elmer G W, Speelman P. et al . Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study.  Gastroenterology. 1989;  96 981-988
  • 217 McFarland L V, Surawicz C M, Greenberg R N. et al . A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease.  JAMA. 1994;  271 1913-1918
  • 218 Qamar A, Aboudola S, Warny M. et al . Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice.  Infect Immun. 2001;  69 2762-2765
  • 219 Guslandi M, Mezzi G, Sorghi M. et al . Saccharomyces boulardii in maintenance treatment of Crohn’s disease.  Dig Dis Sci. 2000;  45 1462-1464
  • 220 Gionchetti P, Rizzello F, Venturi A. et al . Antibiotic combination therapy in patients with chronic, treatment-resistant pouchitis.  Aliment Pharmacol Ther. 1999;  13 713-718
  • 221 Gionchetti P, Rizzello F, Venturi A. et al . Probiotics in infective diarrhoea and inflammatory bowel diseases.  J Gastroenterol Hepatol. 2000;  15 489-493
  • 222 Clausen M R, Mortensen P B. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis.  Gut. 1995;  37 684-689
  • 223 Hove H, Mortensen P B. Short-chain fatty acids in the non-adapted and adapted pelvic ileal pouch.  Scand J Gastroenterol. 1996;  31 568-574
  • 224 Patz J, Jacobsohn W Z, Gottschalk-Sabag S. et al . Treatment of refractory distal ulcerative colitis with short chain fatty acid enemas.  Am J Gastroenterol. 1996;  91 731-734
  • 225 Scheppach W. Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group.  Dig Dis Sci. 1996;  41 2254-2259
  • 226 Steinhart A H, Brzezinski A, Baker J P. Treatment of refractory ulcerative proctosigmoiditis with butyrate enemas.  Am J Gastroenterol. 1994;  89 179-183
  • 227 Vernia P, Marcheggiano A, Caprilli R. et al . Short-chain fatty acid topical treatment in distal ulcerative colitis.  Aliment Pharmacol Ther. 1995;  9 309-313
  • 228 Aguilar-Nascimento J E, Franca-da-Silva L R, De Oliveira A F. et al . Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis.  Braz J Med Biol Res. 1999;  32 961-966
  • 229 Scheppach W, Muller J G, Boxberger F. et al . Histological changes in the colonic mucosa following irrigation with short-chain fatty acids.  Eur J Gastroenterol Hepatol. 1997;  9 163-168
  • 230 Araki Y, Andoh A, Fujiyama Y. et al . In vitro alterations in fecal short chain fatty acids and organic anions induced by the destruction of intestinal microflora under hypotonic and aerobic conditions.  Int J Mol Med. 2002;  9 627-631
  • 231 Bianchi-Salvadori B, Vesely R, Ferrari A. et al . Behaviour of the pharmaceutical probiotic preparation VSL#3 in human ileostomy effluent containing its own natural elements.  New Microbiol. 2001;  24 23-33
  • 232 Munkholm L P, Rasmussen D, Ronn B. et al . Elemental diet: a therapeutic approach in chronic inflammatory bowel disease.  J Intern Med. 1989;  225 325-331
  • 233 Okada M, Yao T, Yamamoto T. et al . Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease.  Hepatogastroenterology. 1990;  37 72-80
  • 234 O’Brien C J, Giaffer M H, Cann P A. et al . Elemental diet in steroid-dependent and steroid-refractory Crohn’s disease.  Am J Gastroenterol. 1991;  86 1614-1618
  • 235 Teahon K, Smethurst P, Pearson M. et al . The effect of elemental diet on intestinal permeability and inflammation in Crohn’s disease.  Gastroenterology. 1991;  101 84-89
  • 236 Fujita T, Sakurai K. Efficacy of glutamine-enriched enteral nutrition in an experimental model of mucosal ulcerative colitis.  Br J Surg. 1995;  82 749-751
  • 237 Zoli G, Care M, Parazza M. et al . A randomized controlled study comparing elemental diet and steroid treatment in Crohn’s disease.  Aliment Pharmacol Ther. 1997;  11 735-740
  • 238 Ikeuchi H, Kusunoki M, Yanagi H. et al . Effects of elemental diet (ED) on surgical treatment in Crohn’s disease.  Hepatogastroenterology. 2000;  47 390-392
  • 239 Verma S, Kirkwood B, Brown S. et al . Oral nutritional supplementation is effective in the maintenance of remission in Crohn’s disease.  Dig Liver Dis. 2000;  32 769-774
  • 240 Zachos M, Tondeur M, Griffiths A M. Enteral nutritional therapy for inducing remission of Crohn’s disease.  Cochrane Database Syst Rev. 2001;  CD000542
  • 241 Bailey C J, Hembry R M, Alexander A. et al . Metalloproteinases in the intestine of patients with Crohn’s disease.  Biochem Soc Trans. 1990;  18 896-897
  • 242 Bailey C J, Hembry R M, Alexander A. et al . Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine.  J Clin Pathol. 1994;  47 113-116
  • 243 Saarialho-Kere U K, Vaalamo M, Puolakkainen P. et al . Enhanced expression of matrilysin, collagenase, and stromelysin-1 in gastrointestinal ulcers.  Am J Pathol. 1996;  148 519-526
  • 244 Vaalamo M, Karjalainen-Lindsberg M L, Puolakkainen P. et al . Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations.  Am J Pathol. 1998;  152 1005-1014
  • 245 Baugh M D, Perry M J, Hollander A P. et al . Matrix metalloproteinase levels are elevated in inflammatory bowel disease.  Gastroenterology. 1999;  117 814-822
  • 246 Kossakowska A E, Medlicott S A, Edwards D R. et al . Elevated plasma gelatinase A (MMP-2) activity is associated with quiescent Crohn’s Disease.  Ann N Y Acad Sci. 1999;  878 578-580
  • 247 Heuschkel R B, MacDonald T T, Monteleone G. et al . Imbalance of stromelysin-1 and TIMP-1 in the mucosal lesions of children with inflammatory bowel disease.  Gut. 2000;  47 57-62
  • 248 Arihiro S, Ohtani H, Hiwatashi N. et al . Vascular smooth muscle cells and pericytes express MMP-1, MMP-9, TIMP-1 and type I procollagen in inflammatory bowel disease.  Histopathology. 2001;  39 50-59
  • 249 Di Sebastiano P, di Mola F F, Artese L. et al . Beneficial effects of Batimastat (BB-94), a matrix metalloproteinase inhibitor, in rat experimental colitis.  Digestion. 2001;  63 234-239
  • 250 Gan X, Wong B, Wright S D. et al . Production of matrix metalloproteinase-9 in CaCO-2 cells in response to inflammatory stimuli.  J Interferon Cytokine Res. 2001;  21 93-98
  • 251 Ohkawara T, Nishihira J, Takeda H. et al . Amelioration of dextran sulfate sodium-induced colitis by anti-macrophage migration inhibitory factor antibody in mice.  Gastroenterology. 2002;  123 256-270
  • 252 Rachmilewitz D, Karmeli F, Takabayashi K. et al . Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis.  Gastroenterology. 2002;  122 1428-1441
  • 253 Medina C, Videla S, Radomski A. et al . Increased activity and expression of matrix metalloproteinase-9 in a rat model of distal colitis.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G116-G122
  • 254 Lewis J D, Lichtenstein G R, Stein R B. et al . An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis.  Am J Gastroenterol. 2001;  96 3323-3328
  • 255 Spiegelberg H L, Raz E. DNA based immunotherapeutics for allergy. Frankfurt am Main; Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe 1999: 283-290
  • 256 Chu W, Gong X, Li Z. et al . DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA.  Cell. 2000;  103 909-918
  • 257 Cho J Y, Miller M, Baek K J. et al . Immunostimulatory DNA sequences inhibit respiratory syncytial viral load, airway inflammation, and mucus secretion.  J Allergy Clin Immunol. 2001;  108 697-702
  • 258 Hayashi T, Rao S P, Takabayashi K. et al . Enhancement of innate immunity against Mycobacterium avium infection by immunostimulatory DNA is mediated by indoleamine 2,3-dioxygenase.  Infect Immun. 2001;  69 6156-6164
  • 259 Horner A A, Van Uden J H, Zubeldia J M. et al . DNA-based immunotherapeutics for the treatment of allergic disease.  Immunol Rev. 2001;  179 102-118
  • 260 Joseph A, Louria-Hayon I, Plis-Finarov A. et al . Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines.  Vaccine. 2002;  20 3342-3354

Priv.-Doz. Dr. Axel Dignass
Dr. Daniel C. Baumgart

Univ.-Klinikum Charité, Campus Virchow-Klinikum, Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie

13344 Berlin

Email: daniel.baumgart@charite.de

    >