Neuropediatrics 2003; 34(5): 225-233
DOI: 10.1055/s-2003-43260
Review Article

Georg Thieme Verlag Stuttgart · New York

Functional Magnetic Resonance Imaging in Pediatrics

M. Wilke 1 , 2 , 3 , S. K. Holland 1 , J. S. Myseros 4 , V. J. Schmithorst 1 , W. S. Ball 1  Jr. 
  • 1Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
  • 2Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
  • 3Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tübingen, Tübingen, Germany
  • 4Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
Further Information

Publication History

Received: October 29, 2002

Accepted after Revision: July 22, 2003

Publication Date:
04 November 2003 (online)

Abstract

Functional magnetic resonance imaging (fMRI) allows non-invasive assessment of human brain function in vivo by detecting blood flow differences. In this review, we want to illustrate the background and different aspects of performing functional magnetic resonance imaging (fMRI) in the pediatric age group. An overview over current and future applications of fMRI will be given, and typical problems, pitfalls, and benefits of doing fMRI in the pediatric age group are discussed. We conclude that fMRI can successfully be applied in children and holds great promise for both research and clinical purposes.

References

  • 1 Abou-Khalil B, Schlaggar B L. Is it time to replace the Wada test?.  Neurology. 2002;  59 160-161
  • 2 Aguirre G K, D'Esposito M. Experimental designs for brain fMRI. Moonen CTW, Bandettini PA Functional MRI. Berlin, Heidelberg, New York; Springer Verlag 2000: 369-80
  • 3 Altman N R, Bernal B. Brain activation in sedated children: Auditory and visual functional MR imaging.  Radiology. 2001;  221 56-63
  • 4 Ardekani B A, Bachman A H, Helpern J A. A quantitative comparison of motion detection algorithms in fMRI.  Magn Reson Imaging. 2001;  19 959-963
  • 5 Binder J R, Swanson S J, Hammeke T A, Morris G L, Mueller W M, Fischer M. et al . Determination of language dominance using functional MRI: a comparison with the Wada test.  Neurology. 1996;  46 978-984
  • 6 Bookheimer S. Functional MRI of language: New approaches to understanding the cortical organization of semantic processing.  Annu Rev Neurosci. 2002;  25 151-188
  • 7 Briellmann R S, Abbott D F, Caflisch U, Archer J S, Jackson G D. Brain reorganisation in cerebral palsy: A high-field functional MRI study.  Neuropediatrics. 2002;  33 162-165
  • 8 Burgund E D, Kang H C, Kelly J E, Buckner R L, Snyder A Z, Petersen S E. et al . The feasibility of a common stereotactic space for children and adults in fMRI studies of development.  NeuroImage. 2002;  17 184-200
  • 9 Byars A W, Holland S K, Strawsburg R H, Schmithorst V J, Dunn R S, Ball Jr W S. Practical aspects of conducting large-scale fMRI studies in children.  J Child Neurol. 2002;  17 885-890
  • 10 Chen R, Cohen L G, Hallett M. Nervous system reorganization following injury.  Neuroscience. 2002;  111 761-773
  • 11 Chen W, Ogawa S. Principles of BOLD functional MRI. Moonen CTW, Bandettini PA Functional MRI. Berlin, Heidelberg, New York; Springer Verlag 2000: 103-113
  • 12 Desmond J E, Sum J M, Wagner A D, Demb J B, Shear P K, Glover G H. et al . Functional MRI measurement of language lateralization in Wada-tested patients.  Brain. 1995;  118 1411-1419
  • 13 Detre J A, Wang J. Technical aspects and utility of fMRI using BOLD and ASL.  Clin Neurophysiol. 2002;  113 621-634
  • 14 Di Salle F, Formisano E, Linden D E, Goebel R, Bonavita S, Pepino A. et al . Exploring brain function with magnetic resonance imaging.  Eur J Radiol. 1999;  30 84-94
  • 15 Dymarkowski S, Sunaert S, Van Oostende S, Van Hecke P, Wilms G, Demaerel P. et al . Functional MRI of the brain: Localisation of eloquent cortex in focal brain lesion therapy.  Eur Radiol. 1998;  8 1573-1580
  • 16 Frank Y, Pavlakis S G. Brain imaging in neurobehavioral disorders.  Pediatr Neurol. 2001;  25 278-287
  • 17 Friederici A D, Meyer M, von Cramon D Y. Auditory language comprehension: An event-related fMRI study on the processing of syntactic and lexical information.  Brain Lang. 2000;  75 289-300
  • 18 Gaillard W D, Hertz-Pannier L, Mott S H, Barnett A S, LeBihan D, Theodore W H. Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults.  Neurology. 2000;  54 180-185
  • 19 Gaillard W D, Balsamo L, Xu B, Grandin C B, Braniecki S H, Papero P H. et al . Language dominance in partial epilepsy patients identified with an fMRI reading task.  Neurology. 2002;  59 256-265
  • 20 Golby A J, Poldrack R A, Illes J, Chen D, Desmond J E, Gabrieli J D. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI.  Epilepsia. 2002;  43 855-863
  • 21 Hale T S, Hariri A R, McCracken J T. Attention-deficit/hyperactivity disorder: Perspectives from neuroimaging.  Ment Retard Dev Disabil Res Rev. 2000;  6 214-219
  • 22 Hertz-Pannier L, Chiron C, Jambaque I, Renaux-Kieffer V, Van de Moortele P F, Delalande O. et al . Late plasticity for language in a child's non-dominant hemisphere: A pre- and post-surgery fMRI study.  Brain. 2002;  125 361-372
  • 23 Hertz-Pannier L, Gaillard W D, Mott S H, Cuenod C A, Bookheimer S Y, Weinstein S. et al . Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study.  Neurology. 1997;  48 1003-1012
  • 24 Holland S K, Plante E, Byars A W, Strawsburg R H, Schmithorst V J, Ball Jr W S. Normal fMRI brain activation patterns in children performing a verb generation task.  Neuroimage. 2001;  14 837-843
  • 25 Holloway V, Gadian D G, Vargha-Khadem F, Porter D A, Boyd S G, Connelly A. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study.  Brain. 2000;  123 2432-2444
  • 26 Holodny A I, Schulder M, Liu W C, Wolko J, Maldjian J A, Kalnin A J. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: Implications for image-guided neurosurgery.  AJNR Am J Neuroradiol. 2000;  21 1415-1422
  • 27 Howseman A M, Bowtell R W. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.  Philos Trans R Soc Lond B Biol Sci. 1999;  354 1179-1194
  • 28 Jack C R, Lee C C, Ward H A, Riederer S J. The role of functional MRI in planning perirolandic surgery. Moonen CTW, Bandettini PA Functional MRI. Berlin, Heidelberg, New York; Springer Verlag 2000: 539-550
  • 29 Jager L, Werhahn K J, Hoffmann A, Berthold S, Scholz V, Weber J. et al . Focal epileptiform activity in the brain: Detection with spike-related functional MR imaging - preliminary results.  Radiology. 2002;  223 860-869
  • 30 Jezzard P, Clare S. Sources of distortion in functional MRI data.  Hum Brain Mapp. 1999;  8 80-85
  • 31 Kaplan A M, Bandy D J, Manwaring K H, Chen K, Lawson M A, Moss S D. et al . Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors.  J Neurosurg. 1999;  91 797-803
  • 32 Krings T, Erberich S G, Roessler F, Reul J, Thron A. MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: Implications for functional MR imaging.  AJNR Am J Neuroradiol. 1999;  20 1907-1914
  • 33 Kruger G, Kastrup A, Glover G H. Neuroimaging at 1. 5 T and 3. 0 T: Comparison of oxygenation-sensitive magnetic resonance imaging.  Magn Reson Med. 2001;  45 595-604
  • 34 Lauritzen M. Relationship of spikes, synaptic activity, and local changes of cerebral blood flow.  J Cereb Blood Flow Metab. 2001;  21 1367-1383
  • 35 Logothetis N K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.  Philos Trans R Soc Lond B Biol Sci. 2002;  357 1003-1037
  • 36 Luna B, Sweeney J A. Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses.  Schizophr Bull. 2001;  27 443-455
  • 37 Magistretti P J, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.  Phil Trans R Soc Lond B. 1999;  354 1155-1163
  • 38 Martin E, Joeri P, Loenneker T, Ekatodramis D, Vitacco D, Hennig J. et al . Visual processing in infants and children studied using functional MRI.  Pediatr Res. 1999;  46 135-140
  • 39 McKeown M J, Sejnowski T J. Independent component analysis of fMRI data: Examining the assumptions.  Hum Brain Mapp. 1998;  6 368-372
  • 40 Menon R S. Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI.  Magn Reson Med. 2002;  47 1-9
  • 41 Moses P, Stiles J. The lesion methodology: Contrasting views from adult and child studies.  Dev Psychobiol. 2002;  40 266-277
  • 42 National institutes of Mental Health . National Institute of Mental Health research roundtable on prepubertal bipolar disorder.  J Am Acad Child Adolesc Psychiatry. 2000;  40 871-878
  • 43 Ogawa S, Tank D W, Menon R, Ellermann J M, Kim S G, Merkle H. et al . Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.  Proc Natl Acad Sci USA. 1992;  89 5951-5955
  • 44 Oller D K, Eilers R E, Neal A R, Cobo-Lewis A B. Late onset canonical babbling: a possible early marker of abnormal development.  Am J Ment Retard. 1998;  103 249-263
  • 45 Rijntjes M, Weiller C. Recovery of motor and language abilities after stroke: the contribution of functional imaging.  Prog Neurobiol. 2002;  66 109-122
  • 46 Rivkin M J. Developmental neuroimaging of children using magnetic resonance techniques.  Ment Retard Dev Disabil Res Rev. 2000;  6 68-80
  • 47 Roux F E, Boulanouar K, Ranjeva J P, Tremoulet M, Henry P, Manelfe C. et al . Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas.  Acta Neurochir (Wien). 1999;  141 71-79
  • 48 Rubia K, Overmeyer S, Taylor E, Brammer M, Williams S C, Simmons A. et al . Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI.  Am J Psychiatry. 1999;  156 891-896
  • 49 Schad L R. Improved target volume characterization in stereotactic treatment planning of brain lesions by using high-resolution BOLD MR-venography.  NMR Biomed. 2001;  14 478-483
  • 50 Schapiro M B, Holland S K, Schmithorst V J, Wilke M, Weber Byars A, Strawsburg R. Functional magnetic resonance imaging (fMRI) brain activation increases with age in children performing a finger tapping task.  Ann Neurol. 2002;  52 S135
  • 51 Schlaggar B L, Brown T T, Lugar H M, Visscher K M, Miezin F M, Petersen S E. Functional neuroanatomical differences between adults and school-age children in the processing of single words.  Science. 2002;  296 1476-1479
  • 52 Schmithorst V J, Dardzinski B J, Holland S K. Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan.  IEEE Trans Med Imaging. 2001;  20 535-539
  • 53 Spreer J, Arnold S, Quiske A, Wohlfarth R, Ziyeh S, Altenmuller D. et al . Determination of hemisphere dominance for language: Comparison of frontal and temporal fMRI activation with intracarotid amytal testing.  Neuroradiology. 2002;  44 467-474
  • 54 Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krägeloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: A TMS and fMRI study.  Brain. 2002;  125 2222-2237
  • 55 Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krägeloh-Mann I. Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography.  Neuroimage. 2002;  16 954-967
  • 56 Szaflarski J P, Holland S K, Shear P K, Schmithorst V J, Strakowski S M. et al . Using different fMRI language and memory tasks in healthy adults at 3 T.  Epilepsia. 2002;  43 (Suppl 8) 55
  • 57 Thomas K M, Casey B J. Functional MRI in pediatrics. Moonen CTW, Bandettini PA Functional MRI. Berlin, Heidelberg, New York; Springer Verlag 2000: 513-524
  • 58 Vaidya C J, Austin G, Kirkorian G, Ridlehuber H W, Desmond J E, Glover G H. et al . Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study.  Proc Natl Acad Sci USA. 1998;  95 14494-14499
  • 59 Wilke M, Schmithorst V J, Holland S K. Assessment of spatial normalization of whole-brain magnetic resonance images in children.  Hum Brain Mapp. 2002;  17 48-60
  • 60 Wilke M, Schmithorst V J, Weber A M, Strawsburg R H, Holland S K. Changes in the language lateralization index with age as detected by functional MRI in normal children.  Neuropediatrics. 2002;  33 A4
  • 61 Yetkin F Z, Papke R A, Mark L P, Daniels D L, Mueller W M, Haughton V M. Location of the sensorimotor cortex: functional and conventional MR compared.  AJNR Am J Neuroradiol. 1995;  16 2109-2113

M. D. Marko Wilke

Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tübingen

Hoppe‐Seyler-Straße 3

72076 Tübingen

Germany

Email: Marko.Wilke@med.uni-tuebingen.de

    >