Abstract
We have investigated the somatic activity of the maize Activator (Ac) element in haploid and diploid aspen with the objective of developing an efficient transposon-based system for gene isolation in the model tree species Populus. It was shown that Ac is reinserted, frequently into or near coding regions in aspen, and therefore can be used for gene tagging studies. A number of phenotypic variants were also found following transformation of constructs harbouring the rolC gene. Comparative analyses of T-DNA flanking regions of variants and wild type lines indicate that T-DNA insertion has occurred in or near coding regions. However, the frequency of T-DNA insertion into genes is about one half of the frequency of Ac insertion hitting coding sequences. The results obtained give a proof-of-concept for transposon tagging in a tree system. Given the long generation cycles in tree species, gene tagging strategies are practical only to obtain dominant gain-of-function mutants that do not require selfing or test crossing. In order to obtain recessive loss-of-function mutants, we have regenerated haploid lines from immature pollen. These lines were successfully transformed with a construct containing the rolC transgene from Agrobacterium rhizogenes and Ac element from maize. The results indicate that Ac is also active in haploid aspen and hence can be used in general for gene tagging in trees.
Key words
Ac transposon - Activation tagging - forest tree - mutant - T-DNA.
References
-
1
Bhojwani J., Shashidhara L. S., Sinha P..
Requirement of teashirt (tsh) function during cell fate specification in developing head structures in Drosophila.
.
Development Genes and Evolution.
(1997);
207
137-146
-
2
Busov V. B., Meilan R., Pearce D. W., Ma C., Rood S. B., Strauss S. H..
Activation tagging of a dominant gibberellin catabolism gene (GA2-oxidase) from poplar that regulates tree stature.
Plant Physiol..
(2003);
132
1283-1291
-
3
Campbell M. M., Brunner A. M., Jones H. M., Straus S. H..
Forestry's fertile crescent: the application of biotechnology to forest trees.
Plant Biotechnology J..
(2003);
1
141-154
-
4
Chaffey N., Cholewa E., Regan S., Sundberg S..
Secondary xylem development in Arabidopsis: a model for wood formation.
Physiol. Plant..
(2002);
114
594-600
-
5
Confalonieri M., Balestrazzi A., Bisoffi S., Carbonera D..
In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement.
Plant Cell Tiss. Org. Cult..
(2003);
72
109-138
-
6
De Greve H., Nguyen L. V., Deboek F., Lin T. T., Karimi M., Hernalsteens J. P..
T-DNA tagging of the translation initiation factor elF-4A1 of Arabidopsis thaliana.
.
Plant Science.
(2001);
161
685-693
-
7
Deutsch F., Kumlehn J., Ziegenhagen B., Fladung M..
Stable haploid poplar callus lines from immature pollen culture.
Physiol. Plant.
(2004);
in press
-
8
Feldmann K. A..
T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum.
Plant J..
(1991);
1
71-82
-
9
Fitzmaurice W. P., Nguyen L. V., Wernsman E. A., Thompson W. F., Conkling M. A..
Transposon tagging of the Sulfur gene of tobacco using engineered maize Ac/Ds elements.
Genetics.
(1999);
153
1919-1928
-
10
Fladung M..
Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants.
Plant Breeding.
(1990);
104
295-304
-
11 Fladung M., Ahuja M. R.. Gene transfer in aspen. Schmidt, E. R. and Hankeln, T., eds. Transgenic Organisms and Biosafety, Horizontal Gene Transfer, Stability of DNA and Expression of Transgenes Berlin,. Heidelberg; Springer Verlag (1996): 275-281
-
12
Fladung M..
Gene stability in transgenic aspen-Populus. I. Flanking DNA sequences and T-DNA structure.
Mol. Gen. Genet..
(1999);
260
574-581
-
13
Fladung M., Ahuja M. R..
Excision of the maize transposable element Ac in periclinal leaves of 35S Ac-rolC transgenic aspen-Populus.
.
Plant Mol. Biol..
(1997);
33
1097-1103
-
14
Fladung M., Kumar S..
Gene stability in transgenic aspen-Populus - III. T-DNA repeats influence transgene expression differentially among different transgenic lines.
Plant Biology.
(2002);
51
329-338
-
15
Fladung M., Muhs H. J., Ahuja M. R..
Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes.
.
Silvae Genetica.
(1996);
45
349-354
-
16
Fladung M., Kumar S., Ahuja M. R..
Genetic transformation of Populus genotypes with different chimeric gene constructs: Transformation efficiency and molecular analysis.
Trans. Res..
(1997);
6
111-121
-
17
Fladung M., Nowitzki O., Ziegenhagen B., Kumar S..
Vegetative and generative dispersal capacity of field released transgenic aspen trees.
Trees.
(2003);
17
412-416
-
18
Goff S. A., Ricke D., Lan T. H., Presting G., Wang R. L., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchinson D., Martin C., Katagiri F., Lange B. M., Moughamer T., Xia Y., Budworth P., Zhong J. P., Miguel T., Paszkowski U., Zhang S. P., Colbert M., Sun W. L., Chen L. L., Cooper B., Park S., Wood T. C., Mao L., Quail P., Wing R., Dean R., Yu Y. S., Zharkikh A., Shen R., Sahasrabudhe S., Thomas A., Cannings R., Gutin A., Pruss D., Reid J., Tavtigian S., Mitchell J., Eldredge G., Scholl T., Miller R. M., Bhatnagar S., Adey N., Rubano T., Tusneem N., Robinson R., Feldhaus J., Macalma T., Oliphant A., Briggs S..
A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).
Science.
(2002);
296
92-100
-
19
Huang S. S., Cerny R. E., Bhat D. S., Brown S. M..
Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging.
Plant Physiol..
(2001);
125
573-584
-
20
Jones J. D. G., Bishop G., Carroll B., Dickinson M., English J., Harrison K., Jones D., Scofield S., Thomas C. M..
Prospects for establishing a tomato gene tagging system using the maize transposon activator (Ac).
Proc. R. Soc. Edinb..
(1992);
99B
107-119
-
21
Kaldorf M., Fladung M., Muhs H. J., Buscot F..
Mycorrhizal colonization of transgenic aspen in a field trial.
Planta.
(2002);
214
653-660
-
22
Koncz C., Martini N., Mayerhofer R., Koncz-Kalman Z., Körber H., Redei G. P., Schell J..
High-frequency T-DNA-mediated gene tagging in plants.
Proc. Natl. Acad. Sci. USA.
(1989);
86
8467-8471
-
23
Kumar S., Fladung M..
Determination of transgene repeat formation and promoter methylation in transgenic plants.
BioTechniques.
(2000 a);
28
1128-1137
-
24
Kumar S., Fladung M..
Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in host genome.
Mol. Gen. Genet..
(2000 b);
264
20-28
-
25
Kumar S., Fladung M..
Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen.
Planta.
(2001 a);
213
731-740
-
26
Kumar S., Fladung M..
Controlling transgene integration in plants.
Trends Plant Sci..
(2001 b);
6
155-159
-
27
Kumar S., Fladung M..
Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration.
Plant J..
(2002);
31
543-551
-
28
Kumar S., Fladung M..
Somatic mobility of the maize element Ac and its usability for gene tagging in aspen.
Plant Mol. Biol..
(2003);
51
643-650
-
29
Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F..
Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR.
Plant J..
(1995);
8
457-463
-
30
Maes T., Keukeleire P. D., Gerats T..
Plant tagnology.
Trends Plant Sci..
(1999);
4
90-96
-
31
Martienssen R. A..
Functional genomics: Probing plant gene function and expression with transposons.
Proc. Natl. Acad. Sci. USA.
(1998);
95
2021-2026
-
32
Meissner R., Chague V., Zhu Q. H., Emmanuel E., Elkind Y., Levy A. A..
A high throughput system for transposon tagging and promoter trapping in tomato.
Plant J..
(2000);
22
265-274
-
33
Spena A., Schmülling T., Koncz C., Schell J..
Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants.
EMBO J..
(1987);
6
3891-3899
-
34
Spena A., Aalen R. B., Schulze S. C..
Cell autonomous behavior of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants.
Plant Cell.
(1989);
1
1157-1164
-
35
Springer P. S..
Gene traps: tools for plant development and genomics.
Plant Cell.
(2000);
7
1007-1020
-
36
Taylor G..
Populus: Arabidopsis for Forestry. Do we need a model tree?.
Ann. Bot..
(2002);
90
681-689
-
37
The Arabidopsis Genome Initiative .
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
.
Nature.
(2000);
408
796-815
-
38
Timpte C., Wilson A. K., Estelle M..
The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response.
Genetics.
(1994);
138
1239-1249
-
39
Wilson K., Long D., Swinburne J., Coupland G..
A dissociation insertion causes a semidominant mutation that increases expression of TINY, an arabidopsis gene related to APETALA2.
Plant Cell.
(1996);
8
659-671
-
40
Wullschleger S. D., Jansson S., Taylor G..
Genomics and forest biology: Populus emerges as the perennial favorite.
Plant Cell.
(2002);
14
2651-2655
M. Fladung
BFH, Institute for Forest Genetics and Forest Tree Breeding
Sieker Landstraße 2
22927 Großhansdorf
Germany
eMail: mfladung@uni-hamburg.de
Section Editor: H. Rennenberg