Zusammenfassung
Experimentelle Daten lassen einen Zusammenhang zwischen der Verwendung intravenöser
Eisenpräparate und mehreren schädlichen Wirkungen in vitro sowie in vivo vermuten.
Zu den akuten unerwünschten Nebenwirkungen intravenöser Eisentherapie zählen Rückenschmerz,
Übelkeit, Erbrechen, Hypotension und allergische oder gar anaphylaktische Reaktionen.
Das Risiko für Infektionen oder Atherosklerose aufgrund des Gebrauchs von intravenösen
Eisenpräparaten sind die meist diskutierten Langzeitkomplikationen einer Eisentherapie,
die jedoch nach wie vor kontrovers betrachtet werden. Als potenzielle Ursachen der
Nebenwirkungen einer Eisentherapie steht die Überladung des Transferrins mit konsekutivem
Anstieg des transferrin-ungebundenen Eisenpools im Vordergrund. Die Eisenmoleküle
in diesem Pool zirkulieren in Form von niedrig-molekularen Eisenkomplexen nach der
hoch dosierten Gabe eines intravenösen Eisenpräparates. Diese Komplexe können zu einer
Oxidation von Lipiden, wie am Beispiel vom Anstieg der Malondialdehydkonzentration
(MDA) demonstriert wurde, oder aber auch zu Bildung von „advanced oxidation protein
products” (AOPP) führen. Eisenkomplexe können außerdem wichtige Funktionen der Granulozyten,
zu denen Phagozytose, intrazelluläre Keimabtötung und transendotheliale Migration
gehören, beeinträchtigen. Akute sowie chronische Eisenüberladung sind mit einer gestörten
Endothelfunktion, somit mit einer reduzierten Gefäßreaktivität assoziiert und können
zu einem deutlich erhöhten kardiovaskulären Krankheitsrisiko beitragen. Trotz der
andauernden Kontroversen bezüglich Langzeitkomplikationen von Eisen und aller positiven
Entwicklungen im Bereich der Verträglichkeit von Eisenpräparaten sollte auch heute
die Entscheidung zum intravenösen Eiseneinsatz nach einer kritischen Indikationsstellung
erfolgen.
Abstract
Experimental studies show that intravenous iron administration may be associated with
several harmful effects in vitro and in vivo. Acute side effects of intravenous iron
therapy include back pain, nausea, vomiting, hypotension, and allergic or anaphylactic
reactions. Risk for infection and development of atherosclerosis are the two major
potential chronic side effects of intravenous iron therapy which are still controversial.
Potential mechanisms include an increase of non transferrin bound iron that may circulate
in the form of low molecular weight iron complexes following an intravenous administration
of iron. This in turn can lead to an enhanced oxidation of plasma lipids as shown
by an increase of malondialdehyde or advanced oxidation protein products. Iron complexes
impair critical functions of polymorphonuclear-neutrophilic leukocytes including intracellular
killing and phagocytosis or transendothelial migration. Acute or chronic iron overload
is also associated with disturbed vascular reactivity and may therefore contribute
to excess cardiovascular disease risk. Yet more conclusive studies are needed to determine
the existence or the extent of risk for infection or atherosclerosis. In spite of
the safety of intravenous iron therapy today, it is indispensable to determine a clear
indication for this therapy.
Schlüsselwörter
Chronisches Nierenversagen - renale Anämie - intravenöses Eisen - Eisensaccharose
- Eisenglukonat - oxidativer Stress
Key words
Chronic renal disease - renal anemia - intravenous iron - iron sucrose - iron gluconate
- oxidative stress
References
1
Sunder-Plassmann G, Hörl W H.
Erythropoietin and iron.
Clin Nephrol.
1997;
47
141-157
2
NKF DOQI Work group .
IV. NKF-K/DOQI Clinical Practice Guidelines for Anemia of Chronic Kidney Disease:
update 2000.
Am J Kidney Dis.
2001;
37
182-238
3
Working party for European Best Practice Guidelines for the management of anaemia
in patients with chronic renal failure: European best practice guidelines for the
management of anaemia in patients with chronic renal failure.
Nephrol Dial Transplant.
1999;
14, Suppl 5
1-50
4
Chandler G, Harchowal J, Macdougall I C.
Intravenous iron sucrose: establishing a safe dose.
Am J Kidney Dis.
2001;
38
988-991
5
Yee J, Besarab A.
Iron sucrose: the oldest iron therapy becomes new.
Am J Kidney Dis.
2002;
40
1111-1121
6
Fishbane S, Wagner J.
Sodium ferric gluconate complex in the treatment of iron deficiency for patients on
dialysis.
Am J Kidney Dis.
2001;
37
879-883
7
Wyck D B Van, Cavallo G, Spinowitz B S. et al .
Safety and efficacy of iron sucrose in patients sensitive to iron dextran: North American
clinical trial.
Am J Kidney Dis.
2000;
36
88-97
8
Richardson D, Bartlett C, Will E J.
Optimizing erythropoietin therapy in hemodialysis patients.
Am J Kidney Dis.
2001;
38
109-117
9
Charytan C, Levin N, Al-Saloum M. et al .
Efficacy and safety of iron sucrose for iron deficiency in patients with dialysis-associated
anemia: North American clinical trial.
Am J Kidney Dis.
2001;
37
300-307
10
Coyne D W, Adkinson N F, Nissenson A R. et al .
Sodium ferric gluconate complex in hemodialysis patients. II. Adverse reactions in
iron dextran-sensitive and dextran-tolerant patients.
Kidney Int.
2003;
63
217-224
11
Michael B, Coyne D W, Fishbane S. et al .
Sodium ferric gluconate complex in hemodialysis patients: adverse reactions compared
to placebo and iron dextran.
Kidney Int.
2002;
61
1830-1839
12
Nissenson A R, Lindsay R M, Swan S. et al .
Sodium ferric gluconate complex in sucrose is safe and effective in hemodialysis patients:
North American Clinical Trial.
Am J Kidney Dis.
1999;
33
471-482
13
Sunder-Plassmann G, Hörl W H.
Safety of intravenous injection of iron saccharate in haemodialysis patients.
Nephrol Dial Transplant.
1996;
11
1797-1802
14
Folkert V W, Michael B, Agarwal R. et al .
Chronic use of sodium ferric gluconate complex in hemodialysis patients: safety of
higher-dose (> or = 250 mg) administration.
Am J Kidney Dis.
2003;
41
651-657
15
Prasad P D, Ramamoorthy S, Leibach F H, Ganapathy V.
Molecular cloning of the human placental folate transporter.
Biochem Biophys Res Commun.
1995;
206
681-687
16
Walter T, Arredondo S, Arevalo M, Stekel A.
Effect of iron therapy on phagocytosis and bactericidal activity in neutrophils of
iron-deficient infants.
Am J Clin Nutr.
1986;
44
877-882
17
Murakawa H, Bland C E, Willis W T, Dallman P R.
Iron deficiency and neutrophil function: different rates of correction of the depressions
in oxidative burst and myeloperoxidase activity after iron treatment.
Blood.
1987;
69
1464-1468
18 Hershko C.
Iron and Infection. In: Hallberg LAG (eds) Iron Nutrition in Health and Disease. New York; John Libbey
& Company 1996: 231-238
19
Silva A de, Atukorala S, Weerasinghe I, Ahluwalia N.
Iron supplementation improves iron status and reduces morbidity in children with or
without upper respiratory tract infections: a randomized controlled study in Colombo,
Sri Lanka.
Am J Clin Nutr.
2003;
77
234-241
20
Hoen B, Paul-Dauphin A, Hestin D, Kessler M.
EPIBACDIAL: a multicenter prospective study of risk factors for bacteremia in chronic
hemodialysis patients.
J Am Soc Nephrol.
1998;
9
869-876
21
Hoen B, Paul-Dauphin A, Kessler M.
Intravenous iron administration does not significantly increase the risk of bacteremia
in chronic hemodialysis patients.
Clin Nephrol.
2002;
57
457-461
22
Shah S V, Alam M G.
Role of iron in atherosclerosis.
Am J Kidney Dis.
2003;
41
S80-83
23
Sullivan J L.
Iron therapy and cardiovascular disease.
Kidney Int.
1999;
55, Suppl 69
S135-137
24
Gartside P S, Glueck C J.
The important role of modifiable dietary and behavioral characteristics in the causation
and prevention of coronary heart disease hospitalization and mortality: the prospective
NHANES I follow-up study.
J Am Coll Nutr.
1995;
14
71-79
25
Corti M C, Guralnik J M, Salive M E. et al .
Serum iron level, coronary artery disease, and all-cause mortality in older men and
women.
Am J Cardiol.
1997;
79
120-127
26
Miller M, Hutchins G M.
Hemochromatosis, multiorgan hemosiderosis, and coronary artery disease.
JAMA.
1994;
272
231-233
27
Kooistra M P, Kersting S, Gosriwatana I. et al .
Nontransferrin-bound iron in the plasma of haemodialysis patients after intravenous
iron saccharate infusion.
Eur J Clin Invest.
2002;
32, Suppl 1
36-41
28
Rooyakkers T M, Stroes E S, Kooistra M P. et al .
Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo.
Eur J Clin Invest.
2002;
32, Suppl 1
9-16
29
Sengoelge S, Rainer V, Kletzmayr J. et al .
Dose-dependent effect of parenteral iron therapy on bleomycin detectable iron in immune
apheresis patients.
Kidney Int.
2004;
66
1-8
30
Lim P S, Wei Y H, Yu Y L, Kho B.
Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy.
Nephrol Dial Transplant.
1999;
14
2680-2687
31
Roob J M, Khoschsorur G, Tiran A. et al .
Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis.
J Am Soc Nephrol.
2000;
11
539-549
Gürkan SengoelgeMD
Division of Nephrology and Dialysis · Department of Medicine III · University of Vienna
Währinger Gürtel 18 - 20
A-1090 Wien, Austria
Telefon: +43-1-40400-4391
Fax: +43-1-40400-4392
eMail: Guerkan.Sengoelge@univie.ac.at