Zusammenfassung
Die Elektronenstrahl-Computertomographie (EBT) steht in der Diagnostik kardialer Erkrankungen
in direkter Konkurrenz zu anderen nicht-invasiven Schnittbildverfahren, insbesondere
der Mehrzeilen-Computertomographie, der Magnetresonanztomographie und der Echokardiographie.
Die EBT ist der Goldstandard für die Koronarkalkdetektion und -quantifizierung zur
Erkennung einer präklinischen koronaren Herzkrankheit (KHK), für die EBT sprechen
die standardisierten Untersuchungsprotokolle und die langjährige Erfahrung mit der
Methode. Erste Ergebnisse mit dem Mehrzeilen-CT deuten darauf hin, dass die Koronarkalkbestimmung
mit dieser neuen Technik in ähnlicher Weise wie mit der EBT möglich ist. Der grundsätzliche
Wert CT-gestützter Koronarkalkmessungen bleibt unter Radiologen und Kardiologen umstritten,
derweil es an prospektiven randomisierten Studien mangelt. Die angiographische Darstellung
der Koronararterien mittels EBT zeichnet sich durch einen hohen negativ prädiktiven
Wert aus, darüber hinaus kann das Verfahren auch in manchen Fällen bei Patienten mit
manifester KHK indiziert sein. Es bleibt abzuwarten, ob die Koronarangiographie mit
dem Mehrzeilen-CT so akkurat und stabil gelingt, dass diese Technik Eingang in die
Routinediagnostik finden und einen Teil der in Deutschland und anderen Ländern großen
Zahl rein diagnostischer Herzkatheteruntersuchungen ersetzen kann. Die Beurteilung
der Durchgängigkeit koronarer Stents mittels EBT ist mit verschiedenen Problemen besetzt
und erscheint uns als Routineverfahren ungeeignet. Empfehlenswert ist die EBT für
die Untersuchung koronarer Bypässe zwecks Detektion von Verschlüssen und signifikanter
Stenosen, was allerdings ähnlich gut mit dem Mehrzeilen-CT gelingt. Die Messung der
Myokardperfusion mittels EBT hat sich nicht gegen die MRT und andere konkurrierende
Verfahren durchsetzen können. Für die quantitative und qualitative Beurteilung der
Herzfunktion hat sich die EBT als genau, zuverlässig und bisweilen dem Goldstandard
MRT ebenbürtig erwiesen. Verschiedene Nachteile der EBT, nicht zuletzt die geringe
Verbreitung von Elektronenstrahl-Tomographen, schränken ihren Nutzen im Vergleich
zur MRT jedoch ein.
Abstract:
Electron beam tomography (EBT) directly competes with other non-invasive imaging modalities,
such as multislice computed tomography, magnetic resonance imaging, and echocardiography,
in the diagnostic assessment of cardiac diseases. EBT is the gold standard for the
detection and quantification of coronary calcium as a preclinical sign of coronary
artery disease (CAD). Its standardized examination protocols and the broad experience
with this method favor EBT. First results with multislice CT indicate that this new
technology may be equivalent to EBT for coronary calcium studies. The principal value
of CT-based coronary calcium measurements continues to be an issue of controversy
amongst radiologists and cardiologists due to lack of prospective randomized trials.
Coronary angiography with EBT is characterized by a high negative predictive value
and, in addition, may be indicated in some patients with manifest CAD. It remains
to be shown whether coronary angiography with multislice CT is reliable and accurate
enough to be introduced into the routine work-up, to replace some of the many strictly
diagnostic coronary catheterizations in Germany and elsewhere. Assessment of coronary
stent patency with EBT is associated with several problems and in our opinion cannot
be advocated as a routine procedure. EBT may be recommended for the evaluation of
coronary bypasses to look for bypass occlusions and significant stenoses, which, however,
can be equally well achieved with multislice CT. Quantification of myocardial perfusion
with EBT could not replace MRI or other modalities in this field. EBT has proven to
be accurate, reliable and in some instances equivalent to MRI, which is the gold standard
for the quantitative and qualitative evaluation of cardiac function. Some disadvantages,
not the least of which is the limited distribution of electron beam scanners, favor
MRI for functional assessment of the heart.
Key words
Electron beam computed tomography - coronary arteries - coronary bypasses - cardiac
function
Literatur
1
Stanford W, Rumberger J.
Ultrafast Computed tomography in cardiac imaging: principles and practice.
Mount Kisco, NY: Futura Publishing Company,.
1992;
1
1-24
2 Gaa J, Lehmann KJ, Georgi M (Hrsg.) MR-Angiographie und Elektronenstrahl-CT-Angiographie. Stuttgart:
Thieme Verlag 1999: 143-208
3
Becker C, Schätzl M, Schöpf U, Brüning R, Reiser M.
Technische Grundlagen und Akquisitionsbedingungen der Elektronenstrahl-Computertomographie.
Radiologe.
1998;
38
987-992
4
Georgi M.
Chancen und Probleme der Elektronenstrahl-CT (EBT).
Fortschr Röntgenstr.
1999;
170
413-415
5
Lerner D J, Kannel W B.
Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year
follow-up of the Framingham population.
Am Heart J.
1986;
111
383-390
6
Tanenbaum S R, Kondos G T, Veselik K E, Prendergast M R, Brundage B H, Chomka E V.
Detection of calcific deposits in coronary arteries by ultrafast computed tomography
and correlation with angiography.
Am J Cardiol.
1989;
63
870-872
7
Agatston A S, Janowitz W R, Hildner F J, Zusmer N R, Viamonte M, Detrano R.
Quantification of coronary artery calcium using ultrafast computed tomography.
J Amer Coll Cardiol.
1990;
15
827-832
8
Breen J F, Sheedy PF I I, Schwartz R S, Stanson A W, Kaufmann R B, Moll P P, Rumberger J A.
Coronary artery calcification detected with ultrafast CT as an indication of coronary
artery disease.
Radiology.
1992;
185
435-439
9
Budoff M J, Georgiou D, Brody A, Agatston A S, Kennedy J, Wolfkiel C, Stanford W,
Shields P, Lewis R J, Janowitz W R, Rich S, Brundage B H.
Ultrafast computed tomography as a diagnostic modality in the detection of coronary
artery disease: a multicenter study.
Circulation.
1996;
93
898-904
10
Arad Y, Spadaro M, Goodman K G, Lledo-Perez A, Sherman S, Lerner G, Guerci A D.
Prediction of coronary events with electron beam computed tomography: 19-month follow-up
of 1173 asymptomatic subjects.
Circulation.
1996;
93
1951-1953
11
Fiorino A S.
Electron-beam computed tomography, coronary artery calcium, and evaluation of patients
with coronary artery disease.
Ann Intern Med.
1998;
128
839-847
12
Janowitz W R, Agatston A S, Kaplan G, Viamonte M J r.
Differences in prevalence and extent of coronary artery calcium detected by ultrafast
computed tomography in asymptomatic men and women.
Am J Cardiol.
1993;
72
247-254
13
Knollmann F D, Bocksch W, Spiegelsberger S, Hetzer R, Felix R, Hummel M.
Electron Beam Computed Tomography in the Assessment of Coronary Artery Disease After
Heart Transplantation.
Circulation.
2000;
101
2078-2082
14
Rumberger J A, Simons D B, Fitzpatrick L A, Sheedy P F, Schwartz R S.
Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic
plaque area: a histopathologic correlative study.
Circulation..
1995;
92
2157-2162
15
Sangiorgi G, Rumberger J A, Severson A, Edwards W D, Gregoire J, Fitzpatrick L A,
Schwartz R S.
Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic
plaque burden in humans: a histologic study of 723 coronary artery segments using
nondecalcifying methodology.
J Am Coll Cardiol.
1998;
31
126-133
16
Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, Rumberger J, Stanford W,
White R, Taubert K.
Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and
clinical implications: a statement for health professionals from the American Heart
Association: Writing Group.
Circulation.
1996;
94
1175-1192
17
Callister T Q, Raggi P, Cooil B, Lippolis N J, Russo D J.
Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam
computed tomography.
N Engl J Med.
1998;
339
1972-1978
18
Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, Menendez T, Maeffert R,
Kusus M, Regenfus M, Bickel A, Haberl R, Steinbeck G, Moshage W, Daniel W G.
Influence of lipid-lowering therapy on the progression of coronary artery calcification:
a prospective evaluation.
Circulation.
2002;
106
1077-1082
19
Thomson L E, Hachamovitch R.
Coronary artery calcium scoring using electron-beam computed tomography: where does
this test fit into a clinical practice?.
Rev Cardiovasc Med.
2002;
3
121-128
20
O'Rourke R A, Brundage B H, Froelicher V F, Greenland P, Grundy S M, Hachamovitch R,
Pohost G M, Shaw L J, Weintraub W S, Winters W L , Forrester J S, Douglas P S, Faxon D P,
Fisher J D, Gregoratos G, Hochman J S, Hutter A M , Kaul S, Wolk M J.
American College of Cardiology/American Heart Association Expert Consensus Document
on Electron-Beam Computed Tomography for the Diagnosis and Prognosis of Coronary Artery
Disease: Committee Members.
Circulation.
2000;
102
126-140
21
Smith SC J r, Greenland P, Grundy S M.
AHA Conference Proceedings. Prevention conference V: Beyond secondary prevention:
Identifying the high-risk patient for primary prevention: executive summary. American
Heart Association.
Circulation.
2000;
101
111-116
22
Scanlon P J, Faxon D P, Audet A M, Carabello B, Dehmer G J, Eagle K A, Legako R D,
Leon D F, Murray J A, Nissen S E, Pepine C J, Watson R M, Ritchie J L, Gibbons R J,
Cheitlin M D, Gardner T J, Garson A , Russell R O , Ryan T J, Smith S C .
ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American
Heart Association Task Force on practice guidelines (Committee on Coronary Angiography).
Developed in collaboration with the Society for Cardiac Angiography and Interventions.
J Am Coll Cardiol.
1999;
33
1756-1824
23
Detrano R, Wong N D, Doherty T, Shavelle R M, Tang W, Ginzton L E, Budoff M J, Narahara K A.
Coronary calcium does not accurately predict near-term future coronary events in high-risk
adults.
Circulation.
1999;
99
2633-2638
24
Secci A, Wong N, Tang W, Wang S, Doherty T, Detrano R.
Electron beam computed tomographic coronary calcium as a predictor of coronary events:
comparison of two protocols.
Circulation.
1997;
96
1122-1129
25 Ginzberg E (ed.) A Report From the Foundation for Health Services Research. XV
ed. Boston, MA: Harvard University Press 1991: 339-384
26
Haberl R, Knez A, Becker A, Becker C, Maaß A, Brüning R, Reiser M, Steinbeck G.
Stellenwert der Kalkbestimmung mit Elektronenstrahltomographie bei koronarer Herzerkrankung.
Radiologe.
1998;
38
999-1005
27
Detrano R, Hsiai T, Wang S, Puentes G, Fallavollita J, Shields P, Stanford W, Wolfkiel C,
Georgiou D, Budoff M, Reed J.
Prognostic value of coronary calcification and angiographic stenoses in patients undergoing
coronary angiography.
J Am Coll Cardiol.
1996;
27
285-290
28
Sevrukov A, Pratap A, Doss C, Jelnin V, Hoff J A, Kondos G T.
Electron beam tomography imaging of coronary calcium: the effect of body mass index
on radiologic noise.
J Comput Assist Tomogr.
2002;
26
592-597
29
Lu B, Mao S S, Zhuang N, Bakhsheshi H, Yamamoto H, Takasu J, Liu S C, Budoff M J.
Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary
artery imaging.
Invest Radiol.
2001;
36
250-256
30
Achenbach S, Ropers D, Holle J, Muschiol G, Daniel W G, Moshage W.
In-plane coronary arterial motion velocity: measurement with electron-beam CT.
Radiology.
2000;
216
457-463
31
He S, Dai R, Chen Y, Bai H.
Optimal electrocardiographically triggered phase for reducing motion artifact at electron-beam
CT in the coronary artery.
Acad Radiol.
2001;
8
48-56
32
Mao S, Lu B, Oudiz R J, Bakhsheshi H, Liu S C, Budoff M J.
Coronary artery motion in electron beam tomography.
J Comput Assist Tomogr.
2000;
24
253-258
33
Becker C R, Knez A, Jakobs T F, Aydemir S, Becker A, Schoepf U J, Bruening R, Haberl R,
Reiser M F.
Detection and quantification of coronary artery calcification with electron-beam and
conventional CT.
Eur Radiol.
1999;
9
620-624
34
Achenbach S, Ropers D, Mohlenkamp S, Schmermund A, Muschiol G, Groth J, Kusus M, Regenfus M,
Daniel W G, Erbel R, Moshage W.
Variability of repeated coronary artery calcium measurements by electron beam tomography.
Am J Cardiol.
2001;
87
210-213
35
Lu B, Budoff M J, Zhuang N, Child J, Bakhsheshi H, Carson S, Mao S S.
Causes of interscan variability of coronary artery calcium measurements at electron-beam
CT.
Acad Radiol.
2002;
9
654-661
36
Mao S, Bakhsheshi H, Lu B, Liu S C, Oudiz R J, Budoff M J.
Effect of electrocardiogram triggering on reproducibility of coronary artery calcium
scoring.
Radiology.
2001;
220
707-711
37
Mao S, Budoff M J, Bakhsheshi H, Liu S C.
Improved reproducibility of coronary artery calcium scoring by electron beam tomography
with a new electrocardiographic trigger method.
Invest Radiol.
2001;
36
363-367
38
Knez A, Becker C, Becker A, Leber A, White C, Reiser M, Steinbeck G.
Determination of coronary calcium with multi-slice spiral computed tomography: a comparative
study with electron-beam CT.
Int J Cardiovasc Imaging.
2002;
18
295-303
39
Kopp A F, Ohnesorge B, Becker C, Schroder S, Heuschmid M, Kuttner A, Kuzo R, Claussen C D.
Reproducibility and accuracy of coronary calcium measurements with multi-detector
row versus electron-beam CT.
Radiology.
2002;
225
113-119
40
Becker C R, Knez A, Leber A, Hong C, Treede H, Wildhirt S, Ohnesorge B, Flohr T, Schoepf U J,
Reiser M F.
Erste Erfahrungen mit der Mehrzeilendetektorspiral-CT in der Diagnostik der Arteriosklerose
der Koronargefäße.
Radiologe.
2000;
40
118-122
41
Carr J J.
Coronary calcium: the case for helical computed tomography.
J Thorac Imaging.
2001;
16
16-24
42
Becker C R, Jakobs T F, Aydemir S, Becker A, Knez A, Schoepf U J, Bruening R, Haberl R,
Reiser M F.
Helical and single-slice conventional CT versus electron beam CT for the quantification
of coronary artery calcification.
Am J Roentgenol.
2000;
174
543-547
43
Becker C R, Schoepf U J, Reiser M F.
Methods for quantification of coronary artery calcifications with electron beam and
conventional CT and pushing the spiral CT envelope: new cardiac applications.
Int J Cardiovasc Imaging.
2001;
17
203-211
44
Becker C R, Kleffel T, Crispin A, Knez A, Young J, Schoepf U J, Haberl R, Reiser M F.
Coronary artery calcium measurement: agreement of multirow detector and electron beam
CT.
Am J Roentgenol.
2001;
176
1295-1298
45
Sandstede J, Beer M, Pabst T, Kostler H, Hahn D.
Primärdiagnostik der koronaren Herzerkrankung mit MRT und CT.
Fortschr Röntgenstr.
2003;
175
477-483
46
Achenbach S, Moshage W, Ropers D, Nossen J, Daniel W G.
Value of electron-beam computed tomography for the noninvasive detection of high-grade
coronary-artery stenoses and occlusions.
N Engl J Med.
1998;
339
1964-1971
47
Reddy G P, Chernoff D M, Adams J R, Higgins C B.
Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial
reconstructions.
Radiology.
1998;
208
167-172
48
Achenbach S, Moshage W, Bachmann K.
Detection of high-grade restenosis after PTCA using contrast-enhanced electron beam
CT.
Circulation.
1997;
96
2785-2788
49
Schmermund A, Rensing B J, Sheedy P F, Bell M R, Rumberger J A.
Intravenous electron-beam computed tomographic coronary angiography for segmental
analysis of coronary artery stenoses.
J Am Coll Cardiol.
1998;
31
1547-1554
50
Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K.
Nichtinvasive Koronarangiographie mittels Elektronenstrahltomographie: Methodik und
klinische Evaluierung im Follow-up nach PTCA.
Z Kardiol.
1997;
86
121-130
51
Enzweiler C N, Kivelitz D E, Wiese T H, Taupitz M, Hohn S, Borges A C, Pietsch L,
Dohmen P, Baumann G, Hamm B.
Coronary artery bypass grafts: improved electron-beam tomography by prolonging breath
holds with preoxygenation.
Radiology.
2000;
217
278-283
52
Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W,
Daniel W G, Achenbach S.
Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed
tomography and multiplanar reconstruction.
Circulation..
2003;
107
664-666
53
Giesler T, Baum U, Ropers D, Ulzheimer S, Wenkel E, Mennicke M, Bautz W, Kalender W A,
Daniel W G, Achenbach S.
Noninvasive visualization of coronary arteries using contrast-enhanced multidetector
CT: influence of heart rate on image quality and stenosis detection.
Am J Roentgenol.
2002;
179
911-916
54
Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B.
Neue technische Entwicklungen in der Mehrschicht-CT, Teil 2: Cardiale Bildgebung mit
16 sub-millimeter Schichten und erhöhter Gantry-Rotationsgeschwindigkeit.
Fortschr Röntgenstr.
2002;
174
1022-1027
55
Heuschmid M, Kuttner A, Flohr T, Wildberger J E, Lell M, Kopp A F, Schroder S, Baum U,
Schaller S, Hartung A, Ohnesorge B, Claussen C D.
Darstellung der Herzkranzgefäße im CT mittels neuer 16-Zeilen-Technologie und reduzierter
Rotationszeit: Erste Erfahrungen.
Fortschr Röntgenstr.
2002;
174
721-724
56
Poll L W, Cohnen M, Brachten S, Ewen K, Modder U.
Reduktion der Strahlenexposition bei der Mehrschicht-Spiral CT des Herzens durch EKG-synchronisierte
Modulation des Röhrenstromes („ECG Pulsing”): Phantommessungen.
Fortschr Röntgenstr.
2002;
174
1500-1505
57
Kopp A F, Kuttner A, Heuschmid M, Schroder S, Ohnesorge B, Claussen C D.
Multidetector-row CT cardiac imaging with 4 and 16 slices for coronary CTA and imaging
of atherosclerotic plaques.
Eur Radiol.
2002;
12
(Suppl 2)
S17-24
58
Leber A W, Knez A, Becker C, Becker A, White C, Thilo C, Reiser M, Haberl R, Steinbeck G.
Non-invasive intravenous coronary angiography using electron beam tomography and multislice
computed tomography.
Heart.
2003;
89
591-594
59
Schroeder S, Kopp A F, Kuettner A, Burgstahler C, Herdeg C, Heuschmid M, Baumbach A,
Claussen C D, Karsch K R, Seipel L.
Influence of heart rate on vessel visibility in noninvasive coronary angiography using
new multislice computed tomography: experience in 94 patients.
Clin Imaging.
2002;
26
106-111
60
Lembcke A, Rogalla P, Mews J, Blobel J, Enzweiler C N, Wiese T H, Hermann K G, Hamm B.
Darstellung der Koronararterien mittels Mehrschicht-Spiral-CT: Optimierung der Bildqualität
mittels Multisegment-Rekonstruktion und variabler Gantry-Rotationszeit.
Fortschr Röntgenstr.
2003;
175
780-785
61
Schmermund A, Haude M, Baumgart D, Gorge G, Gronemeyer D, Seibel R, Sehnert C, Erbel R.
Non-invasive assessment of coronary Palmaz-Schatz stents by contrast enhanced electron
beam computed tomography.
Eur Heart J.
1996;
17
1546-1553
62
Pump H, Mohlenkamp S, Sehnert C A, Schimpf S S, Schmidt A, Erbel R, Gronemeyer D H,
Seibel R M.
Coronary arterial stent patency: assessment with electron-beam CT.
Radiology.
2000;
214
447-452
63
Smekal A von, Knez A, Seelos K C, Haberl R, Spiegl F, Reichart B, Steinbeck G, Reiser M.
A comparison of ultrafast computed tomography, magnetic resonance angiography and
selective angiography for the detection of coronary bypass patency.
Fortschr Röntgenstr.
1997;
166
185-191
64
Ha J W, Cho S Y, Shim W H, Chung N, Jang Y, Lee H M, Choe K O, Chung W J, Choi S H,
Yoo K J, Kang M S.
Noninvasive evaluation of coronary artery bypass graft patency using three-dimensional
angiography obtained with contrast-enhanced electron beam CT.
Am J Roentgenol.
1999;
172
1055-1059
65
Knollmann F D, Pasic M, Zurbrugg H R, Knorig J, Spiegelsberger S, Loebe M, Hummel M,
Beier J, Vogl T J, Hosten N, Hetzer R, Felix R.
Elektronenstrahl-Computertomographie in der Herzchirurgie.
Radiologe.
1998;
38
1045-1053
66
Knez A, Haberl R, Becker C, Becker A, Engelmann M, Bruning R, Reiser M, Steinbeck G.
Stellenwert der Elektronenstrahltomographie in der Beurteilung der Durchgängigkeit
aortokoronarer Bypässe.
Radiologe.
1998;
38
1012-1020
67
Knez A, Smekal A von, Haberl R, Spiegl F, Reichart B, Reiser M, Steinbeck G.
Stellenwert der ultraschnellen Computertomographie zum Nachweis der Durchgängigkeit
koronarer Bypässe.
Z Kardiol.
1996;
85
629-634
68
Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K.
Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron
beam tomography.
Am J Cardiol.
1997;
79
856-861
69
Enzweiler C N, Wiese T H, Petersein J, Lembcke A E, Borges A C, Dohmen P, Hoffmann U,
Hamm B.
Diameter changes of occluded venous coronary artery bypass grafts in electron beam
tomography: preliminary findings.
Eur J Cardiothorac Surg.
2003;
23
347-353
70
Lipton M J, Higgins C B, Boyd D P.
Computed tomography of the heart: evaluation of anatomy and function.
J Am Coll Cardiol.
1985;
5
55S-69S
71
Rumberger J A, Bell M R.
Measurement of myocardial perfusion and cardiac output using intravenous injection
methods by ultrafast (cine) computed tomography.
Invest Radiol.
1992;
27
S40-S46
72
Reiter S J, Rumberger J A, Feiring A J, Stanford W, Marcus M L.
Precision of measurements of right and left ventricular volume by cine computed tomography.
Circulation.
1986;
74
890-900
73
Becker A, Becker C, Knez A, Haberl R, Bruning R, Reiser M, Steinbeck G.
Funktionsuntersuchungen des Herzens mit der Elektronenstrahltomographie.
Radiologe.
1998;
38
1021-1028
74
Schmermund A, Rensing B J, Sheedy P F, Rumberger J A.
Reproducibility of right and left ventricular volume measurements by electron-beam
CT in patients with congestive heart failure.
Int J Card Imaging.
1998;
14
201-209
75
Weiss F, Habermann C R, Lilje C, Sasse K, Kuhne T, Weil J, Adam G.
MRT in der postoperativen Diagnostik bei funktionell univentrikulärem Herz: Korrelation
zu Echokardiographie und Kardangiographie.
Fortschr Röntgenstr.
2002;
174
1537-1543
76
Kivelitz D E, Enzweiler C NH, Wiese T H, Lembcke A, Borges A, Zytowski M, Taupitz M,
Hamm B.
Bestimmung linksventrikulärer Funktionsparameter und der Myokardmasse: Vergleich von
MRT und EBT.
Fortschr Röntgenstr.
2000;
172
244-250
77
Rich S, Chomka E V, Stagl R, Shanes J G, Kondos G T, Brundage B H.
Determination of left ventricular ejection fraction using ultrafast computed tomography.
Am Heart J.
1986;
112
392-396
78
MacMillan R M, Rees M R.
Determinants of left ventricular ejection fraction by ultrafast computed tomography.
Angiology.
1988;
39
203-210
79
Rumberger J A, Behrenbeck T, Bell M R, Breen J F, Johnston D L, Holmes D R , Enriquez-Sarano M.
Determination of ventricular ejection fraction: a comparison of available imaging
methods. The Cardiovascular Imaging Working Group.
Mayo Clin Proc.
1997;
72
860-870
80
Hajduczok Z D, Weiss R M, Stanford W, Marcus M L.
Determination of right ventricular mass in humans and dogs with ultrafast cardiac
computed tomography.
Circulation.
1990;
82
202-212
81
Mathru M, Wolfkiel C J, Jelnin V, Sullivan H J, Blakeman B, Winters G, Hirsch L J,
Pifarre R.
Measurement of right ventricular volume in human explanted hearts using ultrafast
cine computed tomography.
Chest.
1994;
105
585-588
82
Bleiweis M S, Mao S S, Brundage B H.
Total biventricular volume and total left ventricular volume by ultrafast computed
tomography: prediction of left ventricular mass.
Am Heart J.
1994;
127
667-673
83
Feiring A J, Rumberger J A, Reiter S J, Skorton D J, Collins S M, Lipton M J, Higgins C B,
Ell S, Marcus M L.
Determination of left ventricular mass in dogs with rapid-acquisition cardiac computed
tomographic scanning.
Circulation.
1985;
72
1355-1364
84
Lembcke A, Wiese T H, Enzweiler C NH, Kivelitz D E, Dushe S, Dohmen P M, Borges A C,
Rogalla P, Hamm B.
Quantification of mitral valve regurgitation by left ventricular volume and flow meausurements
using electron beam computed tomography: Comparison with magnetic resonance imaging.
J Comput Assist Tomogr.
2003;
27
385-391
85
Hamada S, Takamiya M, Ohe T, Ueda H.
Arrhythmogenic right ventricular dysplasia: evaluation with electron-beam CT.
Radiology.
1993;
187
723-727
86
Knollmann F D, Loebe M, Spiegelsberger S, Halfmann R, Kaufmann F, Muller J, Hosten N,
Hetzer R, Felix R.
Radiologic Anatomy of Ventricular Assist Devices.
J Thorac Imaging.
1999;
14
293-299
87
Rominger M B, Kluge A, Dinkel H P, Bachmann G F.
Vergleich von biventrikulärer MR-Volumetrie und MR-Flussmessungen in Aorta ascendens
und Truncus pulmonalis zur intrakardialen Shuntbestimmung.
Fortschr Röntgenstr.
2002;
174
1380-1386
88
Knollmann F D, Felix R.
Neue Wege der bildgebenden Herzdiagnostik mit der Elektronenstrahltomographie.
Z Kardiol.
2000;
89
11-18
89
Knollmann F D, Muschick P, Krause W, Hausmann H, Hetzer R, Felix R.
Detection of myocardial ischemia by electron beam CT. Experimental studies.
Acta Radiol.
2001;
42
386-392
Dr. Christian Enzweiler
Institut für Radiologie, Charité Campus Mitte, Humboldt-Universität zu Berlin
Schumannstraße 20/21
10098 Berlin
Phone: ++49/30-450-527031
Fax: ++49/30-450-527911
Email: christian.enzweiler@charite.de