Int J Sports Med 2004; 25(7): 509-515
DOI: 10.1055/s-2004-820946
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Fatigue and Recovery After High-Intensity Exercise Part II: Recovery Interventions

G. Lattier1 , G. Y. Millet1 , A. Martin1 , V. Martin1
  • 1Faculty of Sport Sciences - University of Burgundy, Dijon Cedex, France
Further Information

Publication History

Accepted after revision: October 15, 2003

Publication Date:
24 May 2004 (online)

Abstract

The purpose of this study was to determine the effect of three types of recovery intervention to neuromuscular function after high-intensity uphill running exercise. The 20-min recovery interventions were (i) passive, (ii) active (running at 50 % of maximal aerobic speed), and (iii) low-frequency electromyostimulation. Evoked twitch and maximal voluntary contractions of knee extensor muscles (KE) and EMG of the vastus lateralis and vastus medialis were analysed immediately after the exercise, 10 min after the end of the recovery periods, and 65 min after the exercise (Post65). An all-out running test was also performed 80 min after the end of the fatiguing exercise. No significant differences were noted in any measured parameters but a tendency to a better performance during the all-out test was found after the electromyostimulation intervention (297.5 ± 152.4 s vs. 253.6 ± 117.1 s and 260.3 ± 105.8 s after active and passive recovery, p = 0.13 and p = 0.12, respectively). At Post65, isometric maximal voluntary contraction torque did not return to the pre-exercise values (279.7 ± 86.5 vs. 298.7 ± 92.6 Nm, respectively; p < 0.05). During recovery, electrically evoked twitch was characterized by an increase of peak torque, maximal rate of force development and relaxation (+ 24 - 33 %; p < 0.001) but these values were still lower at Post65 than pre-exercise. Amplitude and surface of the M-wave decreased during recovery. These results show that the recovery of the voluntary force-generating capacity of KE after an intermittent high-intensity uphill running exercise do not depend on the type of recovery intervention tested here. It can also be concluded that the recovery of twitch contractile properties does not necessarily follow that of maximal muscle strength.

References

  • 1 Ahmaidi S, Granier P, Taoutaou Z, Mercier J, Dubouchaud H, Prefaut C. Effects of active recovery on plasma lactate and anaerobic power following repeated intensive exercise.  Med Sci Sports Exerc. 1996;  28 450-456
  • 2 Bangsbo J, Graham T, Johansen L, Saltin B. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.  J Appl Physiol. 1994;  77 1890-1895
  • 3 Bogdanis G C, Nevill M E, Lakomy H K, Graham C M, Louis G. Effects of active recovery on power output during repeated maximal sprint cycling.  Eur J Appl Physiol. 1996;  74 461-469
  • 4 Bond V, Adams R G, Tearney R J, Gresham K, Ruff W. Effects of active and passive recovery on lactate removal and subsequent isokinetic muscle function.  J Sports Med Phys Fitn. 1991;  31 357-361
  • 5 Choi D, Cole K J, Goodpaster B H, Fink W J, Costill D L. Effect of passive and active recovery on the resynthesis of muscle glycogen.  Med Sci Sports Exerc. 1994;  26 992-996
  • 6 Cramp A F, Gilsenan C, Lowe A S, Walsh D M. The effect of high- and low-frequency transcutaneous electrical nerve stimulation upon cutaneous blood flow and skin temperature in healthy subjects.  Clin Physiol. 2000;  20 150-157
  • 7 Cramp F L, McCullough G R, Lowe A S, Walsh D M. Transcutaneous electric nerve stimulation: the effect of intensity on local and distal cutaneous blood flow and skin temperature in healthy subjects.  Arch Phys Med Rehabil. 2002;  83 5-9
  • 8 Dimitrova N A, Dimitrov G V. Amplitude-related characteristics of motor unit and M-wave potentials during fatigue. A simulation study using literature data on intracellular potential changes found in vitro.  J Electromyogr Kinesiol. 2002;  12 339-349
  • 9 Falk B, Einbinder M, Weinstein Y, Epstein S, Karni Y, Yarom Y, Rotstein A. Blood lactate concentration following exercise: effects of heat exposure and of active recovery in heat-acclimatized subjects.  Int J Sports Med. 1995;  16 7-12
  • 10 Gupta S, Goswami A, Sadhukhan A K, Mathur D N. Comparative study of lactate removal in short term massage of extremities, active recovery and a passive recovery period after supramaximal exercise sessions.  Int J Sports Med. 1996;  17 106-110
  • 11 Lattier G, Millet G Y, Martin A, Martin V. Fatigue and recovery after high intensity exercise. Part I: Neuromuscular fatigue.  Int J Sports Med. 2004;  in press
  • 12 Lau S, Berg K, Latin R W, Noble J. Comparison of active and passive recovery of blood lactate and subsequent performance of repeated work bouts in ice hockey players.  J Strength Cond Res. 2001;  15 367-371
  • 13 Linnamo V, Hakkinen K, Komi P V. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading.  Eur J Appl Physiol. 1998;  77 176-181
  • 14 McEniery C M, Jenkins D G, Barnett C. The relationship between plasma potassium concentration and muscle torque during recovery following intense exercise.  Eur J Appl Physiol. 1997;  75 462-466
  • 15 Miller B F, Gruben K G, Morgan B J. Circulatory responses to voluntary and electrically induced muscle contractions in humans.  Phys Ther. 2000;  80 53-60
  • 16 Miller M, Downham D, Lexell J. Superimposed single impulse and pulse train electrical stimulation: A quantitative assessment during submaximal isometric knee extension in young, healthy men.  Muscle Nerve. 1999;  22 1038-1046
  • 17 Monedero J, Donne B. Effect of recovery interventions on lactate removal and subsequent performance.  Int J Sports Med. 2000;  21 593-597
  • 18 Pääsuke M, Ereline J, Gapeyeva H. Neuromuscular fatigue during repeated exhaustive submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and untrained men.  Acta Physiol Scand. 1999;  166 319-326
  • 19 Rigaux P, Zicot M. Augmentation du débit artériel fémoral.  Kinésithérapie Scientifique. 1996;  357 7-13
  • 20 Sloniger M A, Cureton K J, Prior B M, Evans E M. Lower extremity muscle activation during horizontal and uphill running.  J Appl Physiol. 1997;  83 2073-2079
  • 21 Taoutaou Z, Granier P, Mercier B, Mercier J, Ahmaidi S, Prefaut C. Lactate kinetics during passive and partially active recovery in endurance and sprint athletes.  Eur J Appl Physiol. 1996;  73 465-470
  • 22 Thiriet P, Gozal D, Wouassi D, Oumarou T, Gelas H, Lacour J R. The effect of various recovery modalities on subsequent performance, in consecutive supramaximal exercise.  J Sports Med Phys Fitn. 1993;  33 118-129
  • 23 Vollestad N K. Measurement of human muscle fatigue.  J Neurosci Meth. 1997;  74 219-227
  • 24 Vollestad N K, Sejersted I, Saugen E. Mechanical behavior of skeletal muscle during intermittent voluntary isometric contractions in humans.  J Appl Physiol. 1997;  83 1557-1565
  • 25 Watson R C, Hanley R D. Application of active recovery techniques for a simulated ice hockey task.  Can J Appl Sport Sci. 1986;  11 82-87
  • 26 Weber M D, Servedio F J, Woodall W R. The effects of three modalities on delayed onset muscle soreness.  J Orthop Sports Phys Ther. 1994;  20 236-242
  • 27 Weltman A, Regan J D. Prior exhaustive exercise and subsequent, maximal constant load exercise performance.  Int J Sports Med. 1983;  4 184-189
  • 28 Weltman A, Stamford B A, Fulco C. Recovery from maximal effort exercise: lactate disappearance and subsequent performance.  J Appl Physiol. 1979;  47 677-682
  • 29 West W, Hicks A, McKelvie R, O'Brien J. The relationship between plasma potassium, muscle membrane excitability and force following quadriceps fatigue.  Pflugers Arch. 1996;  432 43-49

G. Lattier

Faculty of Sport Sciences · University of Burgundy

BP 27877

21078 Dijon Cedex

France

Phone: + 33380396762

Fax: + 33 3 80 39 67 02

Email: Gregory.Lattier@u-bourgogne.fr

    >