Abstract
This study analysed the spatial-temporal and coordinative structures in 12 elite male
100-m front crawl swimmers. Swim performance was analysed over each length of a 25-m
pool divided into five zones of 5 m. Velocity (V), stroke rate (SR), and stroke length
(SL) were calculated for each zone and each length. Four stroke phases were identified
by video analysis and the Index of Coordination (IdC) was established. Three modes
of coordination were identified: catch-up (IdC < 0), opposition (IdC = 0), and superposition
(IdC > 0). The swimmers tended to reduce the decrease in V and SR over the course
of the 100 m by maintaining a stable SL. In fact, these spatial-temporal values were
stable during the time spent stroking and were higher or lower during the start, the
turns (in and out), and the finish. Thus the spatial-temporal changes did not occur
within the lengths, but between them. Conversely, the evolution in the IdC showed
that the swimmers had to install the stroke at the beginning and only reached a stable
coordination in the second part of the race. Moreover, the IdC increased throughout
the different zones of each 25-m length, indicating changes in motor organisation,
particularly increases in the push or pull phases. The IdC values corresponded to
a superposition of the arms, linked to a six-beat leg kick. Achievement of an effective
superposition coordination occurred by boosting the stroke just after the turn-out
until the end of the length. Regarding the spatial-temporal and coordinative structures
of a 100-m front crawl, great swimming skill was reflected by both high and stable
data.
Key words
Biomechanics - motor control - crawl - coordination
References
- 1
Arellano R, Brown P, Cappaert J, Nelson R C.
Analysis of 50, 100 and 200 m freestyle swimmers at the 1992 Olympic Games.
J Appl Biomech.
1994;
10
189-199
- 2 Arellano R, Cossor J, Wilson B, Chatard J C.
Modelling competitive swimming in different strokes and distances upon regression
analysis: a study of the female participants of Sidney 2000 Olympic Games. Blackwell JR, Sanders RH XIXth International Symposium on Biomechanics in Sports. San
Francisco; University of California 2001: 53-56
- 3
Chollet D, Chalies S, Chatard J C.
A new index of coordination for the crawl: description and usefulness.
Int J Sports Med.
2000;
21
54-59
- 4 Chollet D, Moretto P, Pelayo P, Sidney M.
Energetic effects of velocity and stroke rate control in non-expert swimmers. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Swimming Science
VII. London; E & FN Spon 1996: 172-176
- 5
Chollet D, Pelayo P.
Effects of different methodologies in calculating stroke length in swimming.
J Hum Mov Stud.
1999;
36
127-136
- 6
Chollet D, Pelayo P, Tourny C, Sidney M.
Comparative analysis of 100 m and 200 m events in the four strokes in top level swimmers.
J Hum Mov Stud.
1996;
31
25-37
- 7
Chollet D, Pelayo P, Delaplace C, Tourny C, Sidney M.
Stroking characteristic variations in the 100 m freestyle for male swimmers of different
skill.
Perc Motor Skills.
1997;
85
167-177
- 8 Costill D L, Maglischo E W, Richardson (eds) A B. Swimming. Oxford; Blackwell Scientific
Publications 1992
- 9
Craig A B, Skehan P L, Pawelczyk J A, Boomer W L.
Velocity, stroke rate, and distance per stroke during elite swimming competition.
Med Sci Sports Exerc.
1985;
17
625-634
- 10
Deschodt V J, Arsac L M, Rouard A H.
Relative contribution of arms and legs in humans to propulsion in 25 m sprint front
crawl swimming.
Eur J Appl Physiol.
1999;
80
192-199
- 11
Kennedy P, Brown P, Chengalur S N, Nelson R C.
Analysis of male and female Olympic swimmers in the 100 m events.
Int J Sport Biomech.
1990;
6
187-197
- 12 Keskinen K L.
Measurement of technique in front crawl swimming. Mihyashita M, Mutoh Y, Richardson AB Medicine and Science in Aquatic Sports. Basel;
Karger 1994: 117-125
- 13 Keskinen K L, Komi P V.
Effect of leg action on stroke performance in swimming. MacLaren D, Reilly T, Less A Swimming Science VI. London; E & FN Spon 1992: 251-255
- 14
Kolmogorov S V, Rumyantseva O A, Gordon B J, Cappaert J M.
Hydrodynamic characteristics of competitive swimmers of different genders and performance
levels.
J Appl Biomech.
1997;
13
88-97
- 15
Lerda R, Cardelli C, Chollet D.
Analysis of the interactions between breathing and arm actions in the front crawl.
J Hum Mov Stud,.
2001;
40
129-144
- 16 Letzelter H, Freitag W.
Stroke length and stroke frequency variations in men's and women's 100 m freestyle
swimming. Hollander AP, Huijing PA, de Groot G Swimming Science IV. Champaign, Illinois; Human
Kinetics Publishers 1983: 315-322
- 17 Maglischo E W. Swimming Fastest. Champaign, Illinois; Human Kinetics 2003
- 18 Maglischo C W, Maglischo E W, Higgins J, Hinrichs R, Luedtke D, Schleihauf R E,
Thayer A.
A biomechanical analysis of the 1984 U. S. Olympic freestyle distance swimmers. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Champaign, Illinois; Human
Kinetics Publishers 1988: 351-359
- 19
Millet G P, Chollet D, Chalies S, Chatard J C.
Coordination in front crawl in elite triathletes and elite swimmers.
Int J Sports Med.
2002;
23
99-104
- 20 Monteil K M, Rouard A H, Dufour A B, Cappaert J M, Troup J P.
Front crawl stroke phases: discriminating kinematic and kinetic parameters. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Swimming Science
VII. London; E & FN Spon 1996: 45-51
- 21
Pai Y C, Hay J G, Wilson B D.
Stroking techniques of elite swimmers.
J Sports Sci.
1984;
2
225-239
- 22
Pelayo P, Sidney M, Kherif T, Chollet D, Tourny C.
Stroking characteristics in freestyle swimming and relationships with anthropometric
characteristics.
J Appl Biomech.
1996;
12
197-206
- 23 Persyn U, Daly D, Vervaecke H, Van Tilborgh L, Verhetsel H.
Profiles of competitors using different patterns in front crawl events. Hollander AP, Huijing PA, de Groot G Swimming Science IV. Champaign, Illinois; Human
Kinetics Publishers 1983: 323-328
- 24 Rouard A H, Schleihauf R E, Troup J P.
Hand forces and phases in freestyle stroke. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Swimming Science
VII. London; E & FN Spon 1996: 35-44
- 25 Schleihauf R E, Higgins J R, Hinricks R, Luedtke D, Maglischo C, Maglischo E W,
Thayer A.
Propulsive techniques: front crawl stroke, butterfly, backstroke and breaststroke. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Champaign, Illinois; Human
Kinetics Publishers 1988: 53-59
- 26
Seifert L, Boulesteix L, Chollet D.
Effect of gender on the adaptation of arm coordination in front crawl.
Int J Sports Med.
2004;
25
217-223
- 27
Seifert L, Chollet D, Bardy B.
Effect of swimming velocity on arm coordination in front crawl: a dynamical analysis.
J Sports Sci.
2004;
22
651-660
- 28 Sidney M, Delhaye B, Baillon M, Pelayo P.
Stroke frequency evolution during 100 m and 200 m events in front crawl swimming. Keskinen KL, Komi PV, Hollander AP Swimming Science VIII. Jyvaskyla, Finland; University
of Jyvaskula 1999: 71-75
- 29
Toussaint H M, Beek P J.
Biomechanics of competitive front crawl swimming.
Sports Med.
1992;
13
8-24
M. L. Seifert
University of Rouen, Faculty of Sports Sciences, CETAPS Laboratory
Bld Siegfried
76821 Mont Saint Aignan Cedex
France
Phone: + 33232107793
Fax: + 33 2 32 10 77 93
Email: l.seifert@libertysurf.fr