Zusammenfassung
Zusammenfassend kann festgestellt werden, dass es sich bei Kardio-CT und Kardio-MR
um zwei technisch unterschiedliche Schnittbildverfahren handelt, die in der Kardiologie
eine ständig wachsende Bedeutung gewinnen. Die Anwendungsschwerpunkte beider Verfahren
unterscheiden sich derzeit trotz der Ähnlichkeit der Abbildung grundsätzlich. Der
Schwerpunkt der klinischen Anwendungen des Kardio-CTs konzentriert sich auf die nicht-invasive
Darstellung von Koronararterien. Diesbezüglich ist das Kardio-CT dem Kardio-MR aufgrund
der höheren Ortsauflösung derzeit überlegen. Der Schwerpunkt klinischer Anwendungen
der Kernspintomographie liegt derzeit neben der morphologischen Darstellung des Herzens
bei intra- und perikardialen Tumoren, komplexen Vitien und Pathologie der großen Gefäße
vor allem in der Beurteilung von Störungen der Ventrikelfunktion (Dobutamin-Stressecho)
und der Perfusion (Adenosin) unter Belastung, sowie in zunehmendem Maße in der Beurteilung
der Ausdehnung und Lokalisation von Myokarddefekten, wie sie im Rahmen von Infarkten,
aber auch von Myokarditiden auftreten können. Bei diesen Anwendungsmöglichkeiten tritt
die Kernspintomographie nur mit einem Teil in direkte Konkurrenz zur nuklearkardiologischen
Diagnostik. Mit den Vorteilen einer fehlenden Exposition von radioaktiver Strahlung
sowie einer höheren Ortsauflösung ersetzt das Kardio-NMR in diesen Anwendungsbereichen
allerdings heute in zunehmendem Umfang die nuklearkardiologische Diagnostik des Herzens.
Abstract
In summary, cardiac computed tomography (CT) and cardiac magnetic resonance (MR) are
two different technologies with distinct imaging properties that gain increasing importance
in clinical cardiology. Even though images may look similar, the areas of application
of CT and MR are quite different. Clinical applications of cardiac CT focus on on-invasive
imaging of the coronary arteries. In this respect, the higher spatial resolution of
cardiac CT constitutes a significant advantage as compared to MR and clinical results
are superior. Clinical applications of cardiac MR, next to morphologic imaging of
the heart, are most frequently found in the context of intra-and pericardial masses,
complex congenital anomalies, and the assessment of left ventricular function (dobutamine)
and perfusion (adenosine) under stress. The evaluation of the size and localization
of myocardial necrosis, scars, and fibrosis gains increasing importance, for example
in the workup of myocardial infarction, but also myocarditis and cardiomyopathies.
In this respect, magnetic resonance imaging partly constitutes an alternative to nuclear
medicine methods. Due to the lack of ionizing radiation and a relatively high spatial
resolution, an increase of MR diagnostic procedures at the expense of nuclear medicine
can be expected.
Schlüsselwörter
Kardio-CT - Kardio-NMR - Myokardperfusion - kardiale Bildgebung - koronare Herzerkrankung
Key words
Cardiac CT - cardiac NMR - myocardial perfusion - cardiac imaging - coronary artery
disease
Literatur
- 1
Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K.
Noninvasive, threedimensional visualization of coronary artery bypass grafts by electron
beam tomography.
Am J Cardiol.
1997;
79
856-861
- 2
Achenbach S, Moshage W, Ropers D, Nossen J, Daniel W G.
Value of electron-beam computed tomography for the detection of high-grade coronary
artery stenoses and occlusions.
N Engl J Med.
1998;
339
1964-1971
- 3
Achenbach S, Ropers D, Regenfus M, Pohle K, Giesler T, Moshage W, Daniel W G.
Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed
tomography, and multislice computed tomography.
Am J Cardiol.
2001;
88
70 E-73 E
- 4
Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C, Wenkel E, Moshage W,
Bautz W, Daniel W G, Kalender W A, Baum U.
Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated,
multislice spiral computed tomography.
Circulation..
2001;
103
2535-2538
- 5
Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, Menendez T, Maeffert R,
Kusus M, Regenfus M, Bickel A, Haberl R, Steinbeck G, Moshage W, Daniel W G.
Influence of lipid-lowering therapy on the progression of coronary artery calcification:
a prospective evaluation.
Circulation.
2002;
106
1077-1082
- 6
Achenbach S, Schmermund A, Erbel R, Silber S, Haberl R, Moshage W, Daniel W G.
Detection of coronary calcifications by electron beam tomography and multislice spiral
CT: clinical relevance.
Z Kardiol.
2003;
92
899-907
- 7
Agatston A S, Janowitz W R, Hildner F J, Zusmer N R, Viamonte M, Detrano R.
Quantification of coronary artery calcium using ultrafast computed tomography.
J Amer Coll Cardiol.
1990;
15
827-832
- 8
Arad Y, Spadaro L A, Goodman K, Newstein D, Guerci A D.
Prediction of coronary events with electron beam computed tomography.
J Am Coll Cardio..
2000;
36
1253-1260
- 9
Baumgart D, Schmermund A, Goerge G, Haude M, Junbo G, Adamzik M, Sehnert C, Altmaier K,
Groenemeyer D, Seibel R, Erbel R.
Comparison of electron beam computed tomography with intracoronary ultrasound and
coronary angiography for detection of coronary atherosclerosis.
J Am Coll Cardiol.
1997;
30
57-64
- 10
Becker C R, Kleffel T, Crispin A, Knez A, Young J, Schoepf U J, Haberl R, Reiser M F.
Coronary artery calcium measurement: agreement of multirow detector and electron beam
CT.
AJR Am J Roentgenol.
2001;
176
1295-1298
- 11
Blankenhorn D H, Stern D.
Coronary arterial calcification, a review.
Amer J Med Sci.
1961;
242
41-49
- 12
Callister T Q, Raggi P, Cooil B, Lippolis N J, Russo D J.
Effect on HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam
computed tomography.
N Engl J Med.
1998;
339
1972-1978
- 13
Detrano R C, Hsiai T, Wang S, Puentes G, Fallavollita J, Shields P, Stanford W, Wolfkiel C,
Georgiou D, Budoff M, Reed J.
Prognostic value of coronary calcification and angiographic stenoses in patients undergoing
coronary angiography.
J Am Coll Cardiol.
1996;
27
285-290
- 14
Erbel R.
The dawn of a new era - non-invasive coronary imaging (editorial).
Herz.
1996;
21
75-77
- 15 European Guidelines on CVD Prevention. European Society of Cardiologie 2003
- 16
Fayad Z A, Nahar T, Fallon J T, Goldmann M, Aguinaldo J G, Badimon J J, Shinnar M,
Chesebro L H, Fuster V.
In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic
aorta.
Circulation.
2000;
101
2503-2509
- 17
Ibrahim T, Nekolla S G, Schreiber K, Odaka K, Volz S, Mehilli J, Guthlin M, Delius W,
Schwaiger M.
Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic
resonance imaging and positron emission tomography.
J Am Coll Cardiol.
2002;
39
864-870
- 18
Kessler W, Achenbach S, Moshage W, Zink D, Kroeker R, Nitz W, Laub G, Bachmann K.
Usefulness of respiratory gated magnetic resonance coronary angiography in assessing
narrowings > or = 50 % in diameter in native coronary arteries and in aortocoronary
bypass conduits.
Am J Cardiol.
1997;
80
989-993
- 19
Kessler W, Laub G, Achenbach S, Ropers D, Moshage W, Daniel W G.
Coronary arteries MR angiography with fast contrast-enhanced three-dimensional breath-hold
imaging - initial experience.
Radiology.
1999;
210
566-572
- 20
Kim R J, Wu E, Rafael A, Chen E L, Parker M A, Simonetti O, Klocke F J, Bonow R O,
Judd R M.
The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial
dysfunction.
N Engl J Med.
2000;
343
1445-1453
- 21
Kim W Y, Danias P G, Stuber M, Flamm S D, Plein S, Nagel E, Langerak S E, Weber O M,
Pedersen E M, Schmidt M, Botnar R M, Manning W J.
Coronary magnetic resonance angiography for the detection of coronary stenoses.
N Engl J Med.
2001;
345
1863-1869
- 22
Klein C, Nekolla S G, Bengel F M, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W,
Mudra H, Wolfram D, Schwaiger M.
Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging:
comparison with positron emission tomography.
Circulation.
2002;
105
162-167
- 23
Knez A, Becker C R, Leber A, Ohnesorge B, Becker A, White C, Haberl R, Reiser M F,
Steinbeck G.
Usefulness of multislice spiral computed tomography angiography for determination
of coronary artery stenoses.
Am J Cardiol.
2001;
88
1191-1194
- 24
Kopp A F, Schroeder S, Kuettner A, Baumbach A, Georg C, Kuzo R, Heuschmid M, Ohnesorge B,
Karsch K R, Claussen C D.
Non-invasive coronary angiography with high resolution multidetector-row computed
tomography. Results in 102 patients.
Eur Heart J.
2002;
23
1714-1725
- 25
Kuhl H P, Beek A M, van der Weerdt A P, Hofman M B, Visser C A, Lammertsma A A, Heussen N,
Visser F C, van Rossum A C.
Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced
magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography.
J Am Coll Cardiol.
2003;
41
1341-1348
- 26
Leber A W, Knez A, Becker C, Becker A, White C, Thilo C, Reiser M, Haberl R, Steinbeck G.
Non-invasive intravenous coronary angiography using electron beam tomography and multislice
computed tomography.
Heart.
2003;
89
633-639
- 27
Lee V S, Resnick D, Tiu S S, Sanger J J, Nazzaro C A, Israel G M, Simonetti O P.
MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results
with (99m)Tc sestamibi.
Radiology.
2004;
230
191-197
- 28
Manning W J, Li W, Edelman R R.
A preliminary report comparing magnetic resonance coronary angiography with conventional
angiography.
N Engl J Med.
1993;
328
828-832
- 29
Moshage W, Achenbach S, Seese B, Bachmann K, Kirchgeorg M.
Coronary artery stenoses: three-dimensional imaging with eletrocardiographically triggered,
contrast agent-enhanced, electron-beam CT.
Radiology.
1995;
196
707-714
- 30
Nagel E, Lehmkuhl H B, Boksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S,
Fleck E.
Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of
high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography.
Circulation.
1999;
99
763-770
- 31
Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E.
Magnetic resonance perfusion measurements for the noninvasive detection of coronary
artery disease.
Circulation.
2003;
108
432-437
- 32
Nieman K, Oudkerk M, Rensing B J, van Ooijen P, Munne A, van Geuns R J, de Feyter P J.
Coronary angiography with multi-slice computed tomography.
Lancet.
2001;
357
599-603
- 33
Pohost G M, Fuisz A R.
From the microscope to the clinic, MR assessment of atherosclerotic plaque (editoral).
Circulation.
1998;
98
1477-1478
- 34
Pozzoli M M, Fioretti P M, Salustri A, Reijs A E, Roelandt J R.
Exercise echocardiography and technetium-99m MIBI single-photon emission computed
tomography in the detection of coronary artery disease.
Am J Cardiol.
1991;
67
350-355
- 35
Raggi P, Callister T Q, Cooil B, He Z X, Lippolis N J, Russo D J, Zelinger A, Mahmarian J J.
Identification of patients at increased risk of first unheralded acute myocardial
infarction by electron-beam computed tomography.
Circulation.
2000;
101
850-855
- 36
Reddy G, Chernoff D M, Adams J R, Higgins C B.
Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial
reconstruction.
Radiology.
1998;
208
167-172
- 37
Regenfus M, Ropers D, Achnebach S, Kessler W, Laub G, Daniel W G, Moshage W.
Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional
breath-hold magnetic resonance coronary angiography.
Am J Cardiol.
2001;
88
70 E-73 E
- 38
Rensing B J, Bongaerts A, van Geuns R J, van Ooijen P, Oudkerk M, de Feyter P.
Intravenous coronary angiography by electron beam computed tomography. A clinical
evaluation.
Circulation.
1998;
98
2509-2512
- 39
Ropers D, Moshage W, Daniel W G, Jessl J, Gottwik M, Achenbach S.
Visualization of coronary artery anomalies and their course by contrast-enhanced electron
beam tomography and three-dimensional reconstruction.
Am J Cardiol.
2001;
87
193-197
- 40
Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W,
Daniel W G, Achenbach S.
Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed
tomography and multiplanar reconstruction.
Circulation.
2003;
107
664-666
- 41
Rumberger J A, Simons D B, Fitzpatrick L A, Sheedy P F, Schwartz R S.
Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic
plaque area.
Circulation.
1995;
92
2157-2162
- 42
Rumberger J A, Brundage B H, Rager D J, Kondos G.
Electron beam computed tomographic coronary calcium scanning: a review and guidelines
for use in asymptomatic persons.
Mayo Clin Proc.
1999;
74
243-252
- 43
Sandstede J JW, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D.
Three-dimensional MR coronary angiography using the navigator technique compared with
conventional coronary angiography.
Am J Roentgenol.
1999;
172
135-139
- 44
Sangiorgi G, Rumberger J A, Severson A, Edwards W D, Gregoire J, Fitzpatrick L A,
Schwartz R S.
Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic
plaque burden in humans: a histologic study of 723 coronary artery segments using
nondecalcifying methodology.
J Am Coll Cardiol.
1998;
31
126-133
- 45
Schmermund A, Rensing B J, Sheedy P F, Bell M R, Rumberger J A.
Intravenous electron-beam computed tomograpic coronary angiography for segmental analysis
of coronary artery stenoses.
J Am Coll Cardiol.
1998;
31
1547-1554
- 46
Schmermund A, Denktas A E, Rumberger J A, Christian T F, Sheedy P F, Bailey K R, Schwartz R S.
Independent and incremental value of coronary artery calcium for predicting the extent
of angiographic coronary artery disease: comparison with cardiac risk factors and
radionuclide perfusion imaging.
J Am Coll Cardiol.
1999;
34
777-786
- 47
Schmermund A, Erbel R, Silber S. MUNICH Registry Study Group .
Multislice Normal Incidence of Coronary Health. Age and gender distribution of coronary
artery calcium measured by four-slice computed tomography in 2,030 persons with no
symptoms of coronary artery disease.
Am J Cardiol.
2002;
90
168-173
- 48
Schroeder S, Kopp A F, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C,
Claussen C D, Karsch K R.
Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice
computed tomography.
J Am Coll Cardiol.
2001;
37
1430-1435
- 49
Secci A, Wong N, Tang W, Wang S, Doherty T, Detrano R.
Electron beam computed tomographic coronary calcium as a predictor of coronary events:
comparison of two protocols.
Circulation.
1997;
96
1122-1129
- 50
Toussaint L F, LaMuraglia G M, Southern J F, Fuster F, Kantor H L.
Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components
of human atherosclerosis in vivo.
Circulation.
1996;
94
932-938
- 51
Van Geuns R JM, de Bruin H G, Rensing B JWM, Wielopolski P A, Hulshoff M D, van Ooijen P MA,
Oudkerk M, de Feyter P J.
Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional
evaluation of a respiratory gated technique.
Heart.
1999;
82
515-519
- 52
Vliegenthart R, Oudkerk M, Song B, van der Kuip D A, Hofman A, Witteman J C.
Coronary calcification detected by electron-beam computed tomography and myocardial
infarction. The Rotterdam Coronary Calcification Study.
Eur Heart J.
2002;
23
1596-1603
- 53
Wayhs R, Zelinger A, Raggi P.
High coronary artery calcium scores pose an extremely elevated risk for hard events.
J Am Coll Cardiol.
2002;
39
225-230
- 54
Wagner A, Mahrholdt H, Holly T A, Elliott M D, Regenfus M, Parker M, Klocke F J, Bonow R O,
Kim R J, Judd R M.
Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT)
perfusion imaging for detection of subendocardial myocardial infarcts: an imaging
study.
Lancet.
2003;
361
374-379
- 55
Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, Rumberger J, Stanford W,
White R, Taubert K.
Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and
clinical implications. A statement for health professional from the American Heart
Association.
Circulation.
1996;
94
1175-1192
- 56
Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B V, Stillman A E, Ugurbil K,
McDonald K, Wilson R F.
Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass
MR imaging.
Radiology.
1997;
204
373-384
Prof. Dr. med. Dr. med. habil. Werner Moshage,
Chefarzt Medizinische Abteilung · Klinikum Traunstein
Cuno-Niggl-Strasse 3
83278 Traunstein