Abstract
Insulin resistance is a common pathogenetic feature of type 2 diabetes. However, hyperglycemia
would not develop if a concomitant defect in insulin secretion were not present. Impaired
insulin secretion results from functional and survival defects of the β-cell. The
functional defects can be demonstrated early in the natural history of diabetes and
they are hallmarked by abnormal pulsatility of basal insulin secretion and loss of
first-phase insulin release in response to a glucose challenge. Moreover, a significant
reduction of the β-cell mass is apparent at the time of the diagnosis of diabetes.
The progressive increase in glucose levels, that seems to characterize the natural
history of type 2 diabetes, has been claimed to be largely due to progressive reduction
of function and mass of β-cells. Although a genetic predisposition is likely to account
for impaired insulin secretion, chronic exposure to hyperglycemia and high circulating
FFA is likely to contribute to both functional and survival defects. The disturbance
in the endocrine activity of the pancreas is not limited to insulin, since a concomitant
increase in fasting plasma glucagon and impaired suppression after the ingestion of
an oral glucose load are often observed. This alteration becomes prominent after the
ingestion of a mixed meal, when plasma glucagon remains much higher in the diabetic
patient as compared to normal individuals. The disproportionate changes in the plasma
concentration of the two pancreatic hormones is clearly evident when the insulin:glucagon
molar ratio is considered. It is the latter that mainly affects hepatic glucose production.
Because of the reduction of the insulin:glucagon molar ratio basal endogenous glucose
concentration will be higher causing fasting hyperglycemia, while the hepatic glucose
output will not be efficiently suppressed after the ingestion of a meal, contributing
to excessive post-prandial glucose rise. Correcting β- and α-cell dysfunction becomes,
therefore, an attractive and rational therapeutic approach, particularly in the light
of new treatments that may directly act on these pathogenetic mechanisms of type 2
diabetes.
Key words
β-cell - α-cell - Insulin - Glucagon - Glucotoxicity - Lipotoxicity - GLP-1 - Thiazolidinediones
References
- 1
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus .
Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.
Diabetes Care.
2000;
23 (suppl. 1)
S4-S19
- 2
DeFronzo R A, Bonadonna R C, Ferrannini E.
Pathogenesis of NIDDM: a balanced overview.
Diabetes Care.
1992;
15
318-368
- 3
UKPDS Group, UK Prospective Diabetes Study 16 .
Overview of six years’ therapy of type 2 diabetes - a progressive disease.
Diabetes.
1995;
44
1249-1258
- 4
O’Rahilly S, Turner R C, Matthews D R.
Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent
diabetes.
N Engl J Med.
1988;
318
1225-1230
- 5
Bergman R N, Finegood D T, Kahn S E.
The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes.
Eur J Clin Invest.
2002;
32 (Suppl 3)
35-45
- 6
Pradhan A D, Manson J E, Meigs J B, Rifai N, Buring J E, Liu S, Ridker P M.
Insulin, proinsulin, proinsulin: insulin ratio, and the risk of developing type 2
diabetes mellitus in women.
Am J Med.
2003;
114
438-444
- 7
Hayden M R.
Islet amyloid, metabolic syndrome, and the natural progressive history of type 2 diabetes
mellitus.
JOP.
2002;
3
126-138
- 8
Avogaro A, Crepaldi C, Miola M, Maran A, Pengo V, Tiengo A, Del P rato.
High blood ketone body concentration in type 2 non-insulin dependent diabetic patients.
J Endocrinol Invest.
1996;
19
99-105
- 9
Maruyama H, Hisatomi A, Orci L, Grodsky G M, Unger R H.
Insulin within islets is a physiologic glucagon release inhibitor.
J Clin Invest.
1984;
74
2296-2299
- 10
Dimitriadis G D, Pehling G B, Gerich J E.
Abnormal glucose modulation of islet A- and B-cell responses to arginine in non-insulin-dependent
diabetes mellitus.
Diabetes.
1985;
34
541-54
- 11
Groop L C, Bonadonna R C, Del Prato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo R A.
Glucose and free-fatty acid metabolism in non-insulin-dependent diabetes: evidence
for multiple insulin resistance.
J Clin Invest.
1989;
84
205-213
- 12
Reaven G M, Chen Y D, Golay A, Swislocki A L, Jaspan J B.
Documentation of hyperglucagonemia throughout the day in nonobese and obese patients
with noninsulin-dependent diabetes mellitus.
J Clin Endocrinol Metab.
1987;
64
106-110
- 13
Unger R H, Aguilar-Parada E, Muller W A, Eisentraut A M.
Studies of pancreatic alpha cell function in normal and diabetic subjects.
J Clin Invest.
1970;
49
837-848
- 14
Baron A D, Schaeffer L, Shragg P, Kolterman O G.
Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output
in type II diabetics.
Diabetes.
1987;
36
274-283
- 15
Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau B R, Ferrannini E.
Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in
humans: a quantitative study.
Diabetes.
2000;
49
1367-1373
- 16
Del Prato S, Castellino P, Simonson D C, DeFronzo R A.
Hyperglucagonemia and insulin-mediated glucose metabolism.
J Clin Invest.
1987;
79
547-55
- 17
Del Prato S, Vigili de Kreutzenberg S, Riccio A. et al .
Partial recovery of insulin secretion and action after combined insulin-sulfonylurea
treatment in type 2 (non-insulin-dependent) diabetic patients with secondary failure
to oral agents.
Diabetologia.
1990;
33
688-695
- 18
D’Alessio D A, Vahl T P.
Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes.
Am J Physiol Endocrinol Metab.
2004;
286
E882-E890
- 19
Rachman J, Barrow B A, Levy J C, Turner R C.
Near-normalisation of diurnal glucose concentrations by continuous administration
of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM.
Diabetologia.
1997;
40
205-211
- 20
Kolterman O G, Buse J B, Fineman M S, Gaines E, Heintz S, Bicsak T A, Taylor K, Kim D,
Aisporna M, Wang Y, Baron A D.
Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma
glucose in subjects with type 2 diabetes.
J Clin Endocrinol Metab.
2003;
88
3082-3089
- 21
Ahren B, Simonsson E, Larsson H, Landin-Olsson M, Torgeirsson H, Jansson P A, Sandqvist M,
Bavenholm P, Efendic S, Eriksson J W, Dickinson S, Holmes D.
Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study
period in type 2 diabetes.
Diabetes Care.
2002;
25
869-875
- 22
Del Prato S, Tiengo A.
The importance of first-phase insulin secretion: implications for the therapy of type
2 diabetes mellitus.
Diabetes Metab Res Rev.
2001;
17
164-174
- 23
Del Prato S, Marchetti P, Bonadonna R C.
Phasic insulin release and metabolic regulation in type 2 diabetes.
Diabetes.
2002;
51 (Suppl 1)
S109-S116
- 24
Cretti A, Lehtovirta M, Bonora E, Brunato B, Zenti M G, Tosi F, Caputo M, Caruso B,
Groop L C, Muggeo M, Bonadonna R C.
Assessment of beta-cell function during the oral glucose tolerance test by a minimal
model of insulin secretion.
Eur J Clin Invest.
2001;
31
405-416
- 25
Haffner S M, Miettinen H, Gaskill S P, Stern M.
Decreased insulin action and insulin secretion predict the development of impaired
glucose tolerance.
Diabetologia.
1996;
39
1201-1207
- 26
Kosaka K, Kuzuya T, Hagura R, Yoshinaga H.
Insulin response to oral glucose load is consistently decreased in established non-insulin-dependent
diabetes mellitus: the usefulness of decreased early insulin response as a predictor
of non-insulin-dependent diabetes mellitus.
Diabet Med.
1996;
13
S109-S119
- 27
Weyer C, Bogardus C, Mott D M, Pratley R E.
The natural history of insulin secretory dysfunction and insulin resistance in the
pathogenesis of type 2 diabetes mellitus.
J Clin Invest.
1999;
104
787-794
- 28
Weyers C, Tataranni P A, Bogardus C, Prately R E.
Insulin resistance and insulin secretory dysfunction are independent predictors of
worsening of glucose tolerance during each stage of Type 2 diabetes development.
Diabetes Care.
2000;
24
89-94
- 29
Larsson H, Ahren B.
Islet dysfunction in insulin resistance involves impaired insulin secretion and increased
glucagon secretion in postmenopausal women with impaired glucose tolerance.
Diabetes Care.
2000;
23
650-657
- 30
Ohneda A, Watanabe K, Horigome K, Sakai T, Kai Y, Oikawa S.
Abnormal response of pancreatic glucagon to glycemic changes in diabetes mellitus.
J Clin Endocrinol Metab.
1978;
46
504-510
- 31
Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, Gerich J.
Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia
in NIDDM.
Diabetes.
1990;
39
1381-1390
- 32
Mitrakou A, Kelley D, Mokan M. et al .
Role of reduced suppression of glucose production and diminished early insulin release
in impaired glucose tolerance.
N Engl J Med.
1992;
326
22-29
- 33
Bruttomesso D, Pianta A, Mari A, Valerio A, Marescotti M-C, Avogaro A, Tiengo A, Del
Prato S.
Restoration of early rise in plasma insulin levels improves the glucose tolerance
of type 2 diabetic patients.
Diabetes.
1999;
48
99-105
- 34
Gerich J E, Lorenzi M, Karam J H, Schneider V, Forsham P H.
Abnormal pancreatic glucagon secretion and postprandial hyperglycemia in diabetes
mellitus.
JAMA.
1975;
234
159-155
- 35
Taylor R, Magnusson I, Rothman D L, Cline G W, Caumo A, Cobelli C, Shulman G I.
Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy
and regulation of glucose homeostasis after a mixed meal in normal subjects.
J Clin Invest.
1996;
97
126-132
- 36
Ferrannini E, Simonson D C, Katz L D, Reichard G Jr., Bevilacqua S, Barrett E J, Olsson M,
DeFronzo R A.
The disposal of an oral glucose load in patients with non-insulin-dependent diabetes.
Metabolism.
1988;
37
79-85
- 37
Matsuda M, Defronzo R A, Glass L, Consoli A, Giordano M, Bressler P, Delprato S.
Glucagon dose-response curve for hepatic glucose production and glucose disposal in
type 2 diabetic patients and normal individuals.
Metabolism.
2002;
51
1111-1119
- 38
Dornhorst A.
Insulinotropic meglitinide analogues.
Lancet.
2001;
358
1709-1716
- 39
Jiang G, Zhang B B.
Glucagon and regulation of glucose metabolism.
Am J Physiol Endocrinol Metab.
2003;
284
E671-E678
- 40
Drucker D J.
Enhancing incretin action for the treatment of type 2 diabetes.
Diabetes Care..
2003;
26
2929-2940
- 41
Wiedeman P E, Trevillyan J M.
Dipeptidyl peptidase IV inhibitors for the treatment of impaired glucose tolerance
and type 2 diabetes.
Curr Opin Investig Drugs.
2003;
4
412-420
- 42
Deng S, Vatamaniuk M, Huang X, Doliba N, Lian M M, Frank A, Velidedeoglu E, Desai N M,
Koeberlein B, Wolf B, Barker C F, Naji A, Matschinsky F M, Markmann J F.
Structural and functional abnormalities in the islets isolated from type 2 diabetic
subjects.
Diabetes.
2004;
53
624-632
- 43
Yoon K H, Ko S H, Cho J H, Lee J M, Ahn Y B, Song K H, Yoo S J, Kang M I, Cha B Y,
Lee K W, Son H Y, Kang S K, Kim H S, Lee I K, Bonner-Weir S.
Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes
mellitus in Korea.
J Clin Endocrinol Metab.
2003;
88
2300-2308
- 44
Butler A E, Janson J, Bonner-Weir S, Ritzel R, Rizza R A, Butler P C.
Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.
Diabetes.
2003;
52
102-110
- 45
Del Prato S, Wishner W J, Gromada J, Schluchter B J.
Beta-cell mass plasticity in type 2 diabetes.
Diabetes Obes Metab.
2004;
6
319-331
- 46
Vinik A, Pittenger G, Rafaeloff R, Rosenberg L, Duguid W.
Determinants of pancreatic islet cell mass: a balance between neogenesis and senescence/apoptosis.
Diabetes Rev.
1996;
4
235-263
- 47
Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz P U.
Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited.
Surv Synth Pathol Res.
1985;
4
110-125
- 48
Bagust A, Beale S.
Deteriorating beta-cell function in type 2 diabetes: a long-term model.
QJM.
2003;
96
281-288
- 49
Leahy J L, Bonner-Weir S, Weir G C.
Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism
of impaired glucose-induced insulin secretion.
Diabetes Care.
1992;
15
442-455
- 50
Robertson R P, Harmon J, Tran P O, Poitout V.
Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes.
Diabetes.
2004;
53 (Suppl 1)
S119-S124
- 51
Del Prato S, Leonetti F, Simonson D C, Sheehan P, Matsuda M, DeFronzo R A.
Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion
and insulin sensitivity in man.
Diabetologia.
1994;
37
1025-1035
- 52
Marchetti P, Lupi R, Federici M, Marselli L, Masini M, Boggi U, Del Guerra S, Patane G,
Piro S, Anello M, Bergamini E, Purrello F, Lauro R, Mosca F, Sesti G, Del Prato S.
Insulin secretory function is impaired in isolated human islets carrying the Gly(972)→Arg
IRS-1 polymorphism.
Diabetes.
2002;
51
1419-1424
- 53
Sesti G, Cardellini M, Marini M A, Frontoni S, D’Adamo M, Del Guerra S, Lauro D, De
Nicolais P, Sbraccia P, Del Prato S, Gambardella S, Federici M, Marchetti P, Lauro R.
A common polymorphism in the promoter of UCP2 contributes to the variation in insulin
secretion in glucose-tolerant subjects.
Diabetes.
2003;
52
1280-1283
- 54
Del Guerra S, Lupi R, Bugliani M, Sbrana S, Torri S, Boggi U, Vistoli F, Mosca F,
Del Prato S, Marchetti P.
Functional characterization of pancreatic islets isolated from Type 2 diabetic donors.
Diabetologia.
2004;
47 (Suppl. 1)
A27
- 55
McGarry J D, Dobbins R L.
Fatty acids, lipotoxicity and insulin secretion.
Diabetologia.
1999;
42
128-138
- 56
Gravena C, Mathias P C, Ashcroft S J.
Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans.
J Endocrinol.
2002;
173
73-80
- 57
Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U,
Piro S, Anello M, Bergamini E, Mosca F, di Mario U, Del Prato S, Marchetti P.
Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on
human pancreatic islets: evidence that beta-cell death is caspase mediated, partially
dependent on ceramide pathway, and Bcl-2 regulated.
Diabetes.
2002;
51
1437-1442
- 58
Prentki M, Joly E, El-Assaad W, Roduit R.
Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell
adaptation and failure in the etiology of diabetes.
Diabetes.
2002;
51 (Suppl 3)
S405-S413
- 59
Ostgren C J, Lindblad U, Ranstam J, Melander A, Rastam L,. Skaraborg hypertension
and Diabetees Project .
Glycaemic control, disease duration and beta-cell function in patients with Type 2
diabetes in a Swedish community. Skaraborg Hypertension and Diabetes Project.
Diabet Med.
2002;
19
125-129
- 60
Lupi R, Del Guerra S, Marselli L, Bugliani M, Boggi U, Mosca F, Marchetti P, Del Prato S.
Rosiglitazone prevents the impairment of human islet function induced by fatty acids:
evidence for a role of PPARgamma2 in the modulation of insulin secretion.
Am J Physiol Endocrinol Metab.
2004;
286
E560-E567
- 61
Finegood D T, McArthur M D, Kojwang D, Thomas M J, Topp B G, Leonard T, Buckingham R E.
Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the
rise in net cell death.
Diabetes.
2001;
50
1021-1029
- 62
List J F, Habener J F.
Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells.
Am J Physiol Endocrinol Metab.
2004;
286
E875-E581
Dr. S. Del Prato
Department of Endocrinology and Metabolism, Section of Diabetes, Ospedale Cisanello
Via Paradisa 2 · Pisa 56124 · Italy
Phone: +39-050995103
Fax: +39050541521 ·
Email: delprato@immr.med.unipi.it