Subscribe to RSS
DOI: 10.1055/s-2004-826854
© Georg Thieme Verlag Stuttgart · New York
Vaskuläre Progenitorzellen und Atherogenese
Regression und Regeneration durch das Knochenmark?Vascular progenitor cells and atherogenesisRegression and regeneration by bone marrow-devided cells?Publication History
eingereicht: 24.9.2003
akzeptiert: 15.1.2004
Publication Date:
21 July 2004 (online)

Kardiovaskuläre Erkrankungen sind die häufigste Todesursache in den westlichen Industrienationen. Diabetes mellitus, Nikotinabusus, Hyperlipidämie, arterielle Hypertonie sowie Alter führen über eine Schädigung der gefäßauskleidenden Endothelzellschicht zur endothelialen Dysfunktion, die mit einer erhöhten Permeabilität der Endothelzellschicht, Apoptose und Veränderungen der Oberflächen- und Adhäsionsmoleküle einhergeht. Die gesteigerte Adhäsion von Thrombozyten und die Invasion von Entzündungszellen in die Gefäßwand, gefolgt von Migration und Proliferation glatter Gefäßmuskelzellen, führen zur Entstehung einer atherosklerotischen Plaque [29].
Ein gesundes Gefäßendothel bzw. die Regeneration und Rekonstitution einer geschädigten Endothelzellschicht sind für die Vermeidung von Atherosklerose und Restenosierungsprozessen nach Herzkatheterinterventionen von entscheidender Bedeutung [27]. Bislang ging man davon aus, dass die reparativen Mechanismen nach einer Endothelläsion durch die angrenzenden Endothelzellen via Proliferation und Wachstum per continuitatem erfolgen. Neuere Untersuchungen zeigen, dass auch zirkulierende endotheliale Progenitorzellen (EPC) aus dem Knochenmark eine wichtige Rolle spielen [2] [11]. Welchen Einfluss aus dem Knochenmark stammende Zellen bei der Atherogenese haben, ist gegenwärtig Gegenstand intensiver Forschung.
Im Folgenden werden neue Erkenntnisse der Stammzellbiologie vorgestellt und die Plastizität von adulten Stammzellen näher beleuchtet. Es werden die wichtigsten experimentellen und klinischen Untersuchungen zum Einfluss von Stamm- und Progenitorzellen auf kardiovaskuläre Erkrankungen diskutiert. Einen besonderen Schwerpunkt wird dabei die Rolle von vaskulären Stamm- und Progenitorzellen bei der Atherogenese einnehmen.
Literatur
- 1
Anderson D J, Gage F H, Weissman I L.
Can stem cells cross lineage boundaries?.
Nat Med.
2001;
7
393-395
MissingFormLabel
- 2
Asahara T, Masuda H, Takahashi T. et al .
Bone marrow origin of endothelial progenitor cells responsible for postnatal
vasculogenesis in physiological and pathological neovascularization.
Circ Res.
1999;
85
221-228
MissingFormLabel
- 3
Asahara T, Murohara T, Sullivan A. et al .
Isolation of putative progenitor endothelial cells for angiogenesis.
Science.
1997;
275
964-967
MissingFormLabel
- 4
Assmus B, Schächinger V, Teupe C. et al .
Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial
Infarction (TOPCARE-AMI).
Circulation.
2002;
106
3009-3017
MissingFormLabel
- 5
Badorff C, Brandes R P, Popp R. et al .
Transdifferentiation of blood-derived human adult endothelial progenitor cells
into functionally active cardiomyocytes.
Circulation.
2003;
107
1024-1032
MissingFormLabel
- 6
Bernal-Mizrachi L, Jy W, Jimenez J J. et al .
High levels of circulating endothelial microparticles in patients with acute
coronary syndromes.
Am Heart J.
2003;
145
962-970
MissingFormLabel
- 7
Blau H M, Brazelton T R, Weimann J M.
The evolving concept of a stem cell: entity or function?.
Cell.
2001;
105
829-841
MissingFormLabel
- 8
Boulanger C M, Scoazec A, Ebrahimian T. et al .
Circulating microparticles from patients with myocardial infarction cause endothelial
dysfunction.
Circulation.
2001;
104
2649-2652
MissingFormLabel
- 9
Brazelton T R, Rossi F M, Keshet G I, Blau H M.
From marrow to brain: expression of neuronal phenotypes in adult mice.
Science.
2000;
290
1775-1779
MissingFormLabel
- 10
Campbell J H, Han C L, Campbell G R.
Neointimal formation by circulating bone marrow cells.
Ann N Y Acad Sci.
2001;
947
18-24
MissingFormLabel
- 11
Crosby J R, Kaminski W E, Schatteman G. et al .
Endothelial cells of hematopoietic origin make a significant contribution to
adult blood vessel formation.
Circ Res.
2000;
87
728-730
MissingFormLabel
- 12
Galli R, Borello U, Gritti A. et al .
Skeletal myogenic potential of human and mouse neural stem cells.
Nat Neurosci.
2000;
3
986-991
MissingFormLabel
- 13
Gill M, Dias S, Hattori K. et al .
Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+)
endothelial precursor cells.
Circ Res.
2001;
88
167-174
MissingFormLabel
- 14
Goodell M A, Jackson K A, Majka S M. et al .
Stem cell plasticity in muscle and bone marrow.
Ann N Y Acad Sci.
2001;
938
208-218
MissingFormLabel
- 15
Gunsilius E, Duba H C, Petzer A L, Kahler C M, Gastl G A.
Contribution of endothelial cells of hematopoietic origin to blood vessel formation.
Circ Res.
2001;
88
E1
MissingFormLabel
- 16
Handgretinger R, Gordon P R, Leimig T. et al .
Biology and plasticity of CD133+ hematopoietic stem cells.
Ann N Y Acad Sci.
2003;
996
141-151
MissingFormLabel
- 17
Hattori K, Dias S, Heissig B. et al .
Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis
by recruitment of vasculogenic and hematopoietic stem cells.
J Exp Med.
2001;
193
1005-1014
MissingFormLabel
- 18
Hattori K, Heissig B, Wu Y. et al .
Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+)
stem cells from bone-marrow microenvironment.
Nat Med.
2002;
8
841-849
MissingFormLabel
- 19
Heeschen C, Aicher A, Lehmann R. et al .
Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell
mobilization.
Blood.
2003;
102
1340-1346
MissingFormLabel
- 20
Hill J M, Zalos G, Halcox J P. et al .
Circulating endothelial progenitor cells, vascular function, and cardiovascular
risk.
N Engl J Med.
2003;
348
593-600
MissingFormLabel
- 21
Hove W R, Van Hoek B, Bajema I M, Ringers J, Van Krieken J H, Lagaaij E L.
Extensive chimerism in liver transplants: Vascular endothelium, bile duct epithelium,
and hepatocytes.
Liver Transpl.
2003;
9
552-556
MissingFormLabel
- 22
Ianus A, Holz G G, Theise N D, Hussain M A.
In vivo derivation of glucose-competent pancreatic endocrine cells from bone
marrow without evidence of cell fusion.
J Clin Invest.
2003;
111
843-850
MissingFormLabel
- 23
Ikpeazu C, Davidson M K, Halteman D, Browning P J, Brandt S J.
Donor origin of circulating endothelial progenitors after allogeneic bone marrow
transplantation.
Biol Blood Marrow Transplant.
2000;
6
301-308
MissingFormLabel
- 24
Jackson K A, Majka S M, Wang H. et al .
Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem
cells.
J Clin Invest.
2001;
107
1395-1402
MissingFormLabel
- 25
Jimenez J J, Jy W, Mauro L M, Soderland C, Horstman L L, Ahn Y S.
Endothelial cells release phenotypically and quantitatively distinct microparticles
in activation and apoptosis.
Thromb Res.
2003;
109
175-180
MissingFormLabel
- 26
Laufs U, Werner N, Link A. et al .
Physical Training Increases Endothelial Progenitor Cells, Inhibits Neointima
Formation, and Enhances Angiogenesis.
Circulation.
2004;
109
220-226
MissingFormLabel
- 27
Libby P, Schwartz D, Brogi E, Tanaka H, Clinton S K.
A cascade model for restenosis. A special case of atherosclerosis progression.
Circulation.
1992;
86
III47-III52
MissingFormLabel
- 28
Lindner V, Fingerle J, Reidy M A.
Mouse model of arterial injury.
Circ Res.
1993;
73
792-796
MissingFormLabel
- 29
Lusis A J.
Atherosclerosis.
Nature.
2000;
407
233-241
MissingFormLabel
- 30
Metcalf D.
Stem cells, pre-progenitor cells and lineage-committed cells: are our dogmas
correct?.
Ann N Y Acad Sci.
1999;
872
289-303
MissingFormLabel
- 31
Motoike T, Markham D W, Rossant J, Sato T N.
Evidence for novel fate of Flk1+ progenitor: Contribution to muscle lineage.
Genesis.
2003;
35
153-159
MissingFormLabel
- 32
Müller P, Pfeiffer P, Koglin J. et al .
Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted
hearts.
Circulation.
2002;
106
31-35
MissingFormLabel
- 33
Orlic D, Kajstura J, Chimenti S. et al .
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
MissingFormLabel
- 34
Preston R A, Jy W, Jimenez J J. et al .
Effects of severe hypertension on endothelial and platelet microparticles.
Hypertension.
2003;
41
211-217
MissingFormLabel
- 35
Quaini F, Urbanek K, Beltrami A P. et al .
Chimerism of the transplanted heart.
N Engl J Med.
2002;
346
5-15
MissingFormLabel
- 36
Rafii S, Lyden D.
Therapeutic stem and progenitor cell transplantation for organ vascularization
and regeneration.
Nat Med.
2003;
9
702-712
MissingFormLabel
- 37
Rauscher F M, Goldschmidt-Clermont P J, Davis B H. et al .
Aging, progenitor cell exhaustion, and atherosclerosis.
Circulation.
2003;
108
457-463
MissingFormLabel
- 38
Rehman J, Li J, Orschell C M, March K L.
Peripheral blood „endothelial progenitor cells” are derived from monocyte/macrophages
and secrete angiogenic growth factors.
Circulation.
2003;
107
1164-1169
MissingFormLabel
- 39
Sabatier F, Darmon P, Hugel B. et al .
Type 1 and type 2 diabetic patients display different patterns of cellular microparticles.
Diabetes.
2002;
51
2840-2845
MissingFormLabel
- 40
Sata M, Saiura A, Kunisato A. et al .
Hematopoietic stem cells differentiate into vascular cells that participate
in the pathogenesis of atherosclerosis.
Nat Med.
2002;
8
403-409
MissingFormLabel
- 41
Simper D, Stalboerger P G, Panetta C J, Wang S, Caplice N M.
Smooth muscle progenitor cells in human blood.
Circulation.
2002;
106
1199-1204
MissingFormLabel
- 42
Steffel J, Wernig M, Knauf U. et al .
Migration and differentiation of myogenic precursors following transplantation
into the developing rat brain.
Stem Cells.
2003;
21
181-189
MissingFormLabel
- 43
Strauer B E, Brehm M, Zeus T. et al .
Intracoronary, human autologous stem cell transplantation for myocardial regeneration
following myocardial infarction.
Dtsch Med Wochenschr.
2001;
126
932-938
MissingFormLabel
- 44
Strauer B E, Brehm M, Zeus T. et al .
Repair of infarcted myocardium by autologous intracoronary mononuclear bone
marrow cell transplantation in humans.
Circulation.
2002;
106
1913-1918
MissingFormLabel
- 45
Strehlow K, Werner N, Berweiler J. et al .
Estrogen Increases Bone Marrow-Derived Endothelial Progenitor Cell Production
and Diminishes Neointima Formation.
Circulation.
2003;
107
3059-3065
MissingFormLabel
- 46
Tepper O M, Galiano R D, Capla J M. et al .
Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation,
adhesion, and incorporation into vascular structures.
Circulation.
2002;
106
2781-2786
MissingFormLabel
- 47
Vasa M, Fichtlscherer S, Aicher A. et al .
Number and migratory activity of circulating endothelial progenitor cells inversely
correlate with risk factors for coronary artery disease.
Circ Res.
2001;
89
E1-E7
MissingFormLabel
- 48
Walter D H, Rittig K, Bahlmann F H. et al .
Statin therapy accelerates reendothelialization: a novel effect involving mobilization
and incorporation of bone marrow-derived endothelial progenitor cells.
Circulation.
2002;
105
3017-3024
MissingFormLabel
- 49
Werner N, Junk S, Laufs U. et al .
Intravenous transfusion of endothelial progenitor cells reduces neointima formation
after vascular injury.
Circ Res.
2003;
93
e17-e24
MissingFormLabel
- 50
Werner N, Priller J, Laufs U. et al .
Bone marrow-derived progenitor cells modulate vascular reendothelialization
and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase
inhibition.
Arterioscler Thromb Vasc Biol.
2002;
22
1567-1572
MissingFormLabel
- 51
Yamaguchi J, Kusano K F, Masuo O. et al .
Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor
cell recruitment for ischemic neovascularization.
Circulation.
2003;
107
1322-1328
MissingFormLabel
Dr. med. Nikos Werner
Medizinische Klinik und Poliklinik, Innere Medizin III (Kardiologie/Angiologie),
Universitätskliniken des Saarlandes
66421 Homburg-Saar
Phone: 06841/1623372
Fax: 06841/1623369
Email: werner@med-in.uni-sb.de