Zusammenfassung
Die Ätiologie und die einzelnen genetischen Determinanten der Schizophrenie sind trotz
eindeutigen Nachweises einer hohen Heritabilität nach wie vor ungeklärt. Wahrscheinliche
Erklärung hierfür ist zum einen die Komplexität des genetischen Hintergrundes und
zum anderen die deutliche Heterogenität des klinischen Erscheinungsbildes dieser Erkrankung.
Eine neue Forschungsstrategie im Rahmen der Schizophrenieforschung besteht darin,
klinisch enger definierte Merkmale, so genannte Endophänotypen zu identifizieren,
um die Kandidatengensuche zu optimieren. Als Endophänotypen bieten sich die deutlich
defizitären kognitiven Funktionen schizophrener Patienten an. Diese zeigen eine enge
pathogenetische Beziehung zu den neurobiologischen Grundlagen der Erkrankung und klinisch
besonders ungünstige Auswirkungen auf die psychosoziale Funktionsfähigkeit Erkrankter.
Die Identifizierung dieser kognitiven Defizite erfolgt - auch in Kombination mit neurophysiologischen
Messmethoden - durch neuropsychologische Testverfahren. Die Ausprägung bzw. Beeinflussung
kognitiver Defizite wird in den nächsten Jahren somit im Fokus sowohl genetischer
Untersuchungen als auch psychosozialer und psychopharmakologischer Therapiestrategien
stehen, mit dem langfristigen Ziel einer verbesserten psychosozialen Integration der
Betroffenen.
Abstract
Despite the compelling evidence for a strong heritability of schizophrenia, the aetiology
and genetic underpinnings of this disabling disease still remain unclear. Reasonable
explanations for current problems in identifying candidate genes for schizophrenia
are the complexity of its genetic background as well as the heterogeneity of the clinical
appearance of this disease. For a higher efficiency in genetic investigations, a new
approach came up which defines clinically distinct traits much more precisely: the
so called endophenotype concept. Schizophrenic patients suffer from marked cognitive
deficits. These deficits are closely related to the neurobiological basis of the disease,
exhibit a high negative impact on clinical outcome, and may serve as endophenotypes
for genetic studies. Identification of neurocognitive endopenotypes is usually performed
in terms of a combination of neuropsychological tests and neurophysiological measurements.
Thus, future genetic investigations as well as psychosocial and psychopharmacological
therapy strategies will focus on the severity and potential therapeutic modification
of cognitive deficits in order to improve psychosocial reintegration of schizophrenic
patients in the long-term.
Literatur
- 1
Angermeyer M C, Matschinger H.
The stigma of mental illness. Effects of labelling on public attitudes towards people
with mental disorders.
Acta Psychiatr Scand.
2003;
108
304-309
- 2
Church S M, Cotter D, Bramon E, Murray R M.
Does schizophrenia result from developmental or degenerative effects?.
J Neural Transm.
2002;
63
129-147
- 3
Keefe R S, Silva S G, Perkins D O, Lieberman J A.
The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia.
A review and meta-analysis.
Schizophr Bull.
1999;
25
201-222
- 4 Meltzer H Y.
Atypical antipsychotic drugs. Chapter 108. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The fourth generation of progress. New
York; Raven 1995
- 5
Mc Guffin P, Owen M J, Farmer A E.
Genetic basis of schizophrenia.
Lancet.
1995;
346
678-682
- 6
Tsuang M T, Gilbertson M W, Faraone S V.
The genetics of schizophrenia. Current knowledge and future directions.
Schizophr Res.
1991;
4
157-171
- 7
Risch N.
Linkage strategies for genetically complex traits. The power of affected relative
pairs.
Am J Hum Gen.
1990;
46
229-241
- 8
Kendler K S, Diehl S R.
The genetics of schizophrenia: a current, genetic-epidemiological perspective.
Schizophr Bull.
1993;
19
261-285
- 9
Gottesmann I I, Gould T D.
The endophenotype concept in psychiatry: etymology and strategic intentions.
Am J Psychiatry.
2003;
160
636-645
- 10
Gasperoni T l, Ekelund J, Huttunen M, Palmer C GS, Zuulio-Henrikson A, Lönnqvist J,
Kaprio J, Peltonen L, Cannon T D.
Genetic linkage and association between chromosome 1q and working memory function
in schizophrenia.
Am J Med Gen Patr B (Neuropsychiatric Genetics).
2003;
116B
8-16
- 11
Sarfati Y, Hardy-Bayle M C.
Could cognitive vulnerability identify high-risk subjects for schizophrenia?.
Am J Med Gen.
2002;
114
893-897
- 12
Sandbrink R, Hartmann T, Masters C L, Beyreuther K.
Genes contributing to Alzheimer's disease.
Mol Psychiatry.
1996;
1
27-40
- 13 Moises H WM. Human genome data analysed by an evolutionary method suggests a decrease
in protein-synthesis rate as cause for schizophrenia and an increase as antipsychotic
mechanism. ArXiv.org e-Print archive 2001 (http://xxx.arxiv.cornell.edu/abs/cond-mat/0110189)
- 14 O'Donovan M C, Williams N M, Owen M J. Recent advances in the genetics of schizophrenia.
HMG Advance Access. Oxford; University Press 2003
- 15
Moises H W, Zoeger T, Gottesman I I.
The glial growths factors deficiency and synaptic destabilization hypothesis of schizophrenia.
BMC Psychiatry.
2002;
2
8
- 16
Araque A, Parpura V, Sanzgiri R P, Haydon P G.
Tripartite synapses: glia, the unacknowledged partner.
Trends Neurosci.
1999;
22
208-215
- 17
Harrison P J, Owen M J.
Genes for schizophrenia? Recent findings and their pathophysiological implications.
Lancet.
2003;
361
417-419
- 18
Cadenhead K S, Braff D L.
Endophenotyping schizotypy: a prelude to genetic studies within the schizophrenia
spectrum.
Schizophr Res.
2002;
54
47-57
- 19
Fan J, McCandliss B D, Sommer T, Raz A, Posner M I.
Testing the efficiency and independence of attentional networks.
J Cognitive Neurosci.
2002;
14
340-347
- 20
Ungerleider L G, Courtney S M, Haxby J V.
A neural system for human visual working memory.
Proc Natl Acad Sci USA.
1998 Feb 3;
95
883-890
- 21
Posner M I, DiGirolamo G J, Fernandez-Duque D.
Brain mechanisms of cognitive skills.
Conscious Cogn.
1997;
6
267-290
- 22
Fan J, Wu Y, Fossella G A, Posner M I.
Assessing the heritability of attentional networks.
BMC Neuroscience.
2001;
2
14
- 23
Green M F.
What are the functional consequences of neurocognitive deficits in schizophrenia?.
Am J Psychiatry.
1996;
153
321-330
- 24
Heaton R K, Gladsjo J A, Palmer B W, Kuck J, Marcotte T D, Jeste D V.
Stability and course of neuropsychological deficits in schizophrenia.
Arch Gen Psychiat.
2001;
58
24-32
- 25
Adler L E, Pachtman E, Franks R D, Pecevich M, Waldo M C, Freedman R.
Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory
gating in schizophrenia.
Biol Psychiatry.
1982;
17
639-654
- 26
Braff D L, Geyer M A.
Sensorimotor gating and schizophrenia. Human and animal model studies.
Arch Gen Psychiatry.
1990;
47
181-188
- 27
Clementz B A, Geyer M A, Braff D L.
Poor P50 suppression among schizophrenia patients and their first-degree biological
relatives.
Am J Psychiatry.
1998;
155
1691-1694
- 28
Cadenhead K S, Light G A, Geyer M A, Braff D L.
Sensory gating deficits assessed by the P50 event-related potential in subjects with
schizotypal personality disorder.
Am J Psychiatry.
2000;
157
55-59
- 29
Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M,
Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo M C, Reimherr F, Wender P, Yaw J, Young D A,
Breese C R, Adams C, Patterson D, Adler L E, Kruglyak L, Leonard S, Byerley W.
Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus.
Proc Natl Acad Sci USA.
1997;
94
587-592
- 30
Houy E, Raux G, Thibaut F, Belmont A, Demily C, Allio G, Haouzir S, Fouldrin G, Petit M,
Frebourg T, Campion D.
The promoter - 194 C polymorphism of the nicotinic alpha 7 receptor gene has a protective
effect against the P50 sensory gating deficit.
Mol Psychiatry.
2004;
9
320-322
- 31
Umbricht D, Koller R, Schmid L, Skrabo A, Grubel C, Huber T, Stassen H.
How specific are deficits in mismatch negativity generation to schizophrenia?.
Biol Psychiatry.
2003;
53
1120-1131
- 32
Javitt D C, Steinschneider M, Schröder C E, Arezzo J C.
Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch
negativity generation: implications for schizophrenia.
Proc Natl Acad Sci USA.
1996;
93
11962-11967
- 33
Turetsky B I, Colbath E A, Gur R E.
P300 subcomponent abnormalities in schizophrenia: I. Physiological evidence for gender
and subtype specific differences in regional pathology.
Biol Psychiatry.
1998;
43
84-96
- 34
Roxborough H, Muir W J, Blackwood D H, Walker M T, Blackburn I M.
Neuropsychological and P300 abnormalities in schizophrenics and their relatives.
Psychol Med.
1993;
23
305-314
- 35
Salisbury D F, Voglmaier M M, Seidman L J, McCarley R W.
Topographic abnormalities of P3 in schizotypal personality disorder.
Biol Psychiatry.
1996;
40
165-172
- 36
Egan M F, Goldberg T E, Kolachana B S, Callicott J H, Mazzanti C M, Straub R E, Goldman D,
Weinberger D R.
Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.
Proc Natl Acad Sci USA.
2001;
98
6917-6922
- 37
Didriksen M.
Effects of antipsychotics on cognitive behaviour in rats using the delayed non-match
to position paradigm.
Eur J Pharmacol.
1995;
281
241-50
- 38
Baddeley A.
The fractionation of working memory.
Proc Natl Acad Sci USA.
1996;
93
13468-13472
- 39
Karlsson P L, Smith K.
Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166
in acutely ill schizophrenic patients.
Psychopharmacology (Berl).
1995;
121
309-316
- 40
Cai J X, Arnsten A F.
Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on
spatial working memory in aged monkeys.
J Pharmacol Exp Ther.
1997;
283
183-189
- 41
Florijn W J, Tarazi F I.
Dopamine receptor subtypes: differential regulation after 8 months treatment with
antipsychotic drugs.
J Pharmacol Exp Ther.
1997;
280
561-569
- 42
Lidow M S, Elsworth J D.
Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex
by chronic treatment with antipsychotic drugs.
J Pharmacol Exp Ther.
1997;
281
597-603
- 43
Heinrichs R W, Zakzanis A A.
Neurocognitive deficit in schizophrenia: a quantitative review of the evidence.
Neuropsychology .
1998;
12
426-445
- 44
Castner S A, Williams G V.
Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1
receptor stimulation [see comments].
Science.
2000;
287
2020-2022
- 45
Muller U DY, Cramon R von.
D1- versus D2-receptor modulation of visuospatial working memory in humans.
J Neurosci.
1998;
18
2720-2728
Dr. med. Carolin Opgen-Rhein
Forschungsgruppe Schizophrenie am CBF · Klinik und Hochschulambulanz für Psychiatrie
und Psychotherapie Charité · Universitätsmedizin Berlin · Campus Benjamin Franklin
Eschenallee 3
14050 Berlin
Email: carolin.opgen-rhein@charite.de