Semin Neurol 2004; 24(1): 111-123
DOI: 10.1055/s-2004-829592
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Congenital Myasthenic Syndromes

C. Michel Harper1
  • 1Professor of Neurology, Mayo College of Medicine; Vice Chair, Department of Neurology, Mayo Clinic, Rochester, Minnesota
Further Information

Publication History

Publication Date:
01 July 2004 (online)

Congenital myasthenic syndromes are genetic disorders of neuromuscular transmission that should be considered in the differential diagnosis of seronegative myasthenia gravis and other neuromuscular disorders. They are present at birth but may not manifest until childhood or adult life. A classification system of congenital myasthenic syndromes based on molecular genetics is under evolution. Clinical and neurophysiological correlations with molecular studies have defined diagnostic criteria that assist the clinician in identifying specific clinical myasthenic syndromes. Some types of congenital myasthenia (e.g., slow-channel and fast-channel syndrome, acetylcholinesterase deficiency, and choline acetyltransferase deficiency) can be identified by clinical features, response to cholinesterase inhibitors, and standard electrodiagnostic studies. The molecular genetics, pathogenesis, clinical features, differential diagnosis, natural history, and treatment of well-characterized congenital myasthenic syndromes are discussed.

REFERENCES

  • 1 Oosterhuis H J. The natural course of myasthenia gravis: a long term follow up study.  J Neurol Neurosurg Psychiatry. 1989;  52 1121-1127
  • 2 Mantegazza R, Baggi F, Antozzi C et al.. Myasthenia gravis (MG): epidemiological data and prognostic factors.  Ann N Y Acad Sci. 2003;  998 413-423
  • 3 Phillips II L H. The epidemiology of myasthenia gravis.  Ann N Y Acad Sci. 2003;  998 407-412
  • 4 Vincent A, Newsom-Davis J. Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays.  J Neurol Neurosurg Psychiatry. 1985;  48 1246-1252
  • 5 Howard Jr F M, Lennon V A, Finley J, Matsumoto J, Elveback L R. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis.  Ann N Y Acad Sci. 1987;  505 526-538
  • 6 Lindstrom J M, Seybold M E, Lennon V A, Whittingham S, Duane D D. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value-1975.  Neurology. 1998;  51 933
  • 7 Evoli A, Tonali P A, Padua L et al.. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis.  Brain. 2003;  126(Pt 10) 2304-2311
  • 8 Sanders D B, El-Salem K, Massey J M, McConville J, Vincent A. Clinical aspects of MuSK antibody positive seronegative MG.  Neurology. 2003;  60 1978-1980
  • 9 Engel A G, Ohno K, Sine S M. Sleuthing molecular targets for neurological diseases at the neuromuscular junction.  Nat Rev Neurosci. 2003;  4 339-352
  • 10 Engel A G, Ohno K, Sine S M. Congenital myasthenic syndromes: progress over the past decade.  Muscle Nerve. 2003;  27 4-25
  • 11 Banwell B L, Russel J, Fukudome T, Shen X M, Stilling G, Engel A G. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency.  J Neuropathol Exp Neurol. 1999;  58 832-846
  • 12 Engel A G, Ohno K, Shen X M, Sine S M. Congenital myasthenic syndromes: multiple molecular targets at the neuromuscular junction.  Ann N Y Acad Sci. 2003;  998 138-160
  • 13 Ohno K, Tsujino A, Brengman J M et al.. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans.  Proc Natl Acad Sci USA. 2001;  98 2017-2022
  • 14 Maselli R A, Chen D, Mo D, Bowe C, Fenton G, Wollmann R L. Choline acetyltransferase mutations in myasthenic syndrome due to deficient acetylcholine resynthesis.  Muscle Nerve. 2003;  27 180-187
  • 15 Tsujino A, Maertens C, Ohno K et al.. Myasthenic syndrome caused by mutation of the SCN4A sodium channel.  Proc Natl Acad Sci USA. 2003;  100 7377-7382
  • 16 Willmann R, Fuhrer C. Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited.  Cell Mol Life Sci. 2002;  59 1296-1316
  • 17 Ramarao M K, Bianchetta M J, Lanken J, Cohen J B. Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering.  J Biol Chem. 2001;  276 7475-7483
  • 18 Huebsch K A, Maimone M M. Rapsyn-mediated clustering of acetylcholine receptor subunits requires the major cytoplasmic loop of the receptor subunits.  J Neurobiol. 2003;  54 486-501
  • 19 Ohno K, Sadeh M, Blatt I, Brengman J M, Engel A G. E-box mutations in the RAPSN promoter region in eight cases with congenital myasthenic syndrome.  Hum Mol Genet. 2003;  12 739-748
  • 20 Ohno K, Engel A G, Shen X M et al.. Rapsyn mutations in humans cause endplate acetylcholine-receptor deficiency and myasthenic syndrome.  Am J Hum Genet. 2002;  70 875-885
  • 21 Burke G, Cossins J, Maxwell S et al.. Rapsyn mutations in hereditary myasthenia: distinct early- and late-onset phenotypes.  Neurology. 2003;  61 826-828
  • 22 Dunne V, Maselli R A. Identification of pathogenic mutations in the human rapsyn gene.  J Hum Genet. 2003;  48 204-207
  • 23 Maselli R A, Dunne V, Pascual-Pascual S I et al.. Rapsyn mutations in myasthenic syndrome due to impaired receptor clustering.  Muscle Nerve. 2003;  28 293-301
  • 24 Muller J S, Mildner G, Muller-Felber W et al.. Rapsyn N88K is a frequent cause of congenital myasthenic syndromes in European patients.  Neurology. 2003;  60 1805-1810
  • 25 Richard P, Gaudon K, Andreux F et al.. Possible founder effect of rapsyn N88K mutation and identification of novel rapsyn mutations in congenital myasthenic syndromes.  J Med Genet. 2003;  40 e81
  • 26 Harper C. Congenital myasthenic syndromes. In: Brown W, Bolton C, Aminoff M Neuromuscular Function and Disease, 1st ed. Philadelphia; WB Saunders 2002: 1687-1696
  • 27 Harper C M, Engel A G. Treatment of 31 congenital myasthenic syndrome patients with 3,4-diaminopyridine.  Neurology. 2000;  54 A395
  • 28 Engel A G, Ohno K, Sine S M. The spectrum of congenital myasthenic syndromes.  Mol Neurobiol. 2002;  26 347-367
  • 29 Croxen R, Hatton C, Shelley C et al.. Recessive inheritance and variable penetrance of slow-channel congenital myasthenic syndromes.  Neurology. 2002;  59 162-168
  • 30 Fukudome T, Ohno K, Brengman J M, Engel A G. Quinidine normalizes the open duration of slow-channel mutants of the acetylcholine receptor.  Neuroreport. 1998;  9 1907-1911
  • 31 Harper C M, Engel A G. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome.  Ann Neurol. 1998;  43 480-484
  • 32 Engel A G, Ohno K, Milone M et al.. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome.  Hum Mol Genet. 1996;  5 1217-1227
  • 33 Gomez C M, Maselli R, Gundeck J E et al.. Slow-channel transgenic mice: a model of postsynaptic organellar degeneration at the neuromuscular junction.  J Neurosci. 1997;  17 4170-4179
  • 34 Milone M, Wang H L, Ohno K et al.. Slow-channel myasthenic syndrome caused by enhanced activation, desensitization, and agonist binding affinity attributable to mutation in the M2 domain of the acetylcholine receptor alpha subunit.  J Neurosci. 1997;  17 5651-5665
  • 35 Ohno K, Quiram P A, Milone M et al.. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor epsilon subunit gene: identification and functional characterization of six new mutations.  Hum Mol Genet. 1997;  6 753-766
  • 36 Harper C M, Fukodome T, Engel A G. Treatment of slow-channel congenital myasthenic syndrome with fluoxetine.  Neurology. 2003;  60 1710-1713
  • 37 Sine S M, Wang H L, Ohno K, Shen X M, Lee W Y, Engel A G. Mechanistic diversity underlying fast channel congenital myasthenic syndromes.  Ann N Y Acad Sci. 2003;  998 128-137
  • 38 Ohno K, Wang H L, Milone M et al.. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit.  Neuron. 1996;  17 157-170
  • 39 Brownlow S, Webster R, Croxen R et al.. Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita.  J Clin Invest. 2001;  108 125-130
  • 40 Shen X M, Ohno K, Fukudome T et al.. Congenital myasthenic syndrome caused by low-expressor fast-channel AChR delta subunit mutation.  Neurology. 2002;  59 1881-1888
  • 41 Ohno K, Engel A G, Brengman J M et al.. The spectrum of mutations causing end-plate acetylcholinesterase deficiency.  Ann Neurol. 2000;  47 162-170
  • 42 Bon S, Ayon A, Leroy J, Massoulie J. Trimerization domain of the collagen tail of acetylcholinesterase.  Neurochem Res. 2003;  28 523-535
  • 43 Ishigaki K, Nicolle D, Krejci E et al.. Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency.  Neuromuscul Disord. 2003;  13 236-244
  • 44 Hutchinson D O, Walls T J, Nakano S et al.. Congenital endplate acetylcholinesterase deficiency.  Brain. 1993;  116(Pt 3) 633-653
  • 45 Kohara N, Lin T S, Fukudome T et al.. Pathophysiology of weakness in a patient with congenital end-plate acetylcholinesterase deficiency.  Muscle Nerve. 2002;  25 585-592
  • 46 Breningstall G N, Kurachek S C, Fugate J H, Engel A G. Treatment of congenital endplate acetylcholinesterase deficiency by neuromuscular blockade.  J Child Neurol. 1996;  11 345-346
  • 47 Milone M, Engel A G. Block of the endplate acetylcholine receptor channel by the sympathomimetic agents ephedrine, pseudoephedrine, and albuterol.  Brain Res. 1996;  740 346-352
  • 48 Conomy J P, Levinsohn M, Fanaroff A. Familial infantile myasthenia gravis: a cause of sudden death in young children.  J Pediatr. 1975;  87 428-430
  • 49 Kraner S, Laufenberg I, Strassburg H M, Sieb J P, Steinlein O K. Congenital myasthenic syndrome with episodic apnea in patients homozygous for a CHAT missense mutation.  Arch Neurol. 2003;  60 761-763
  • 50 Schmidt C, Abicht A, Krampfl K et al.. Congenital myasthenic syndrome due to a novel missense mutation in the gene encoding choline acetyltransferase.  Neuromuscul Disord. 2003;  13 245-251
  • 51 Mora M, Lambert E H, Engel A G. Synaptic vesicle abnormality in familial infantile myasthenia.  Neurology. 1987;  37 206-214
  • 52 Matthes J W, Kenna A P, Fawcett P R. Familial infantile myasthenia: a diagnostic problem.  Dev Med Child Neurol. 1991;  33 924-929
  • 53 Zammarchi E, Donati M A, Masi S, Sarti A, Castelli S. Familial infantile myasthenia: a neuromuscular cause of respiratory failure.  Childs Nerv Syst. 1994;  10 347-349
  • 54 Baptist E C, Landes R V, Sturman Jr J K. Familial infantile myasthenia gravis: a preventable cause of sudden death.  South Med J. 1985;  78 201-202
  • 55 Walls T J, Engel A G, Nagel A S, Harper C M, Trastek V F. Congenital myasthenic syndrome associated with paucity of synaptic vesicles and reduced quantal release.  Ann N Y Acad Sci. 1993;  681 461-468
  • 56 Albers J W, Faulkner J A, Dorovini-Zis K, Barald K F, Must R E, Ball R D. Abnormal neuromuscular transmission in an infantile myasthenic syndrome.  Ann Neurol. 1984;  16 28-34
  • 57 Bady B, Chauplannaz G, Carrier H. Congenital Lambert-Eaton myasthenic syndrome.  J Neurol Neurosurg Psychiatry. 1987;  50 476-478
  • 58 Maselli R A, Kong D Z, Bowe C M et al.. Presynaptic congenital myasthenic syndrome due to quantal release deficiency.  Neurology. 2001;  57 279-289
  • 59 Sine S M, Ohno K, Bouzat C et al.. Mutation of the acetylcholine receptor alpha subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity.  Neuron. 1995;  15 229-239
  • 60 Croxen R, Newland C, Beeson D et al.. Mutations in different functional domains of the human muscle acetylcholine receptor alpha subunit in patients with the slow-channel congenital myasthenic syndrome.  Hum Mol Genet. 1997;  6 767-774
  • 61 Ohno K, Engel A G. Congenital myasthenic syndromes: genetic defects of the neuromuscular junction.  Curr Neurol Neurosci Rep. 2002;  2 78-88
  • 62 Gomez C M, Maselli R A, Vohra B P et al.. Novel delta subunit mutation in slow-channel syndrome causes severe weakness by novel mechanisms.  Ann Neurol. 2002;  51 102-112
  • 63 Shen X M, Ohno K, Tsujino A et al.. Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating.  J Clin Invest. 2003;  111 497-505

C. Michel HarperM.D. 

The Mayo Clinic Foundation, Department of Neurology

200 First Street SW

Rochester, MN 55905

    >