Semin Musculoskelet Radiol 2004; 08(4): 329-353
DOI: 10.1055/s-2004-861579
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Measuring Cartilage Morphology with Quantitative Magnetic Resonance Imaging

Felix Eckstein1 , 2 , Christian Glaser3
  • 1Institute of Anatomy and Musculoskeletal Research, Paracelsus Private Medical University Salzburg, Salzburg, Austria
  • 2Chondrometrics GmbH, Ainring, Germany
  • 3Institute of Clinical Radiology, Ludwig-Maximilians University Munich, Munich, Germany
Further Information

Publication History

Publication Date:
10 January 2005 (online)

ABSTRACT

Magnetic resonance imaging (MRI) is a three-dimensional imaging technique with unparalleled ability to delineate articular cartilage morphology in health and disease. In this article we will review work on the assessment of cartilage morphology with quantitative magnetic resonance imaging and its relevance to the study of cartilage anatomy, physiology, deformation, disease status, disease progression, and response to treatment. The review outlines available pulse sequences and techniques for segmentation and morphological analysis of cartilage morphology. It addresses the accuracy (validity) and precision (reproducibility) of these techniques and summarizes studies on cartilage deformation in intact joints. This article will also review work on determinants and functional adaptation of cartilage morphology and describe changes seen in osteoarthritis. We conclude that fat-suppressed or water excitation gradient-echo magnetic resonance sequences and state-of-the-art digital image analysis techniques display high accuracy and adequate precision for quantitative assessment of cartilage morphology. This renders these techniques powerful and promising tools for cartilage and osteoarthritis research.

REFERENCES

  • 1 Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients.  J Biomech. 1993;  26 969-990
  • 2 Mow V C, Holmes M H, Lai W M. Fluid transport and mechanical properties of articular cartilage: a review.  J Biomech. 1984;  17 377-394
  • 3 Mow V C, Ateshian G A, Spilker R L. Biomechanics of diarthrodial joints: a review of twenty years of progress.  J Biomech Eng. 1993;  115 460-467
  • 4 Ateshian G A, Wang H. Rolling resistance of articular cartilage due to interstitial fluid flow.  Proc Inst Mech Eng [H]. 1997;  211 419-424
  • 5 Hills B A. Boundary lubrication in vivo.  Proc Inst Mech Eng [H]. 2000;  214 83-94
  • 6 Jin Z M, Pickard J E, Forster H et al.. Frictional behaviour of bovine articular cartilage.  Biorheology. 2000;  37 57-63
  • 7 Buckwalter J A, Mankin H J. Articular cartilage: tissue design and chondrocyte-matrix interactions.  Instr Course Lect. 1998;  47 477-486
  • 8 Hunziker E B, Quinn T M, Hauselmann H J. Quantitative structural organization of normal adult human articular cartilage.  Osteoarthritis Cartilage. 2002;  10 564-572
  • 9 Hunziker E B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects.  Osteoarthritis Cartilage. 2002;  10 432-463
  • 10 Buckwalter J A, Mankin H J. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation.  Instr Course Lect. 1998;  47 487-504
  • 11 Felson D T, Zhang Y, Hannan M T et al.. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study.  Arthritis Rheum. 1995;  38 1500-1505
  • 12 Link T M, Steinbach L S, Ghosh S et al.. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings.  Radiology. 2003;  226 373-381
  • 13 Beuf O, Ghosh S, Newitt D C et al.. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee.  Arthritis Rheum. 2002;  46 385-393
  • 14 Heine J. Über die Arthritis deformans.  Arch Path Anat. 1926;  260 521-610
  • 15 Peyron J G. Osteoarthritis. The epidemiologic viewpoint.  Clin Orthop. 1986;  213 13-19
  • 16 Yelin E, Callahan L F. The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups.  Arthritis Rheum. 1995;  38 1351-1362
  • 17 Bradley J D, Brandt K D, Katz B P, Kalasinski L A, Ryan S I. Comparison of an antiinflammatory dose of ibuprofen,an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee.  N Engl J Med. 1991;  325 87-91
  • 18 Brittberg M, Lindahl A, Nilsson A et al.. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.  N Engl J Med. 1994;  331 889-895
  • 19 Brittberg M, Tallheden T, Sjogren-Jansson B et al.. Autologous chondrocytes used for articular cartilage repair: an update. Clin Orthop 2001 391: S337-S348
  • 20 Beary III J F. Joint structure modification in osteoarthritis: development of SMOAD drugs.  Curr Rheumatol Rep. 2001;  3 506-512
  • 21 Creamer P, Hochberg M C. Osteoarthritis.  Lancet. 1997;  350 503-508
  • 22 Buckland-Wright C. Current status of imaging procedures in the diagnosis, prognosis and monitoring of osteoarthritis.  Baillieres Clin Rheumatol. 1997;  11 727-748
  • 23 Vignon E, Conrozier T, Piperno M et al.. Radiographic assessment of hip and knee osteoarthritis. Recommendations: recommended guidelines.  Osteoarthritis Cartilage. 1999;  7 434-436
  • 24 Brandt K D, Mazzuca S A, Conrozier T et al.. Which is the best radiographic protocol for a clinical trial of a structure modifying drug in patients with knee osteoarthritis?.  J Rheumatol. 2002;  29 1308-1320
  • 25 Buckland W. Radiographic assessment of osteoarthritis: comparison between existing methodologies.  Osteoarthritis Cartilage. 1999;  7 430-433
  • 26 Wolfe F, Lane N E, Buckland-Wright C. Radiographic methods in knee osteoarthritis: a further comparison of semiflexed (MTP), Schuss-Tunnel, and weight-bearing anteroposterior views for joint space narrowing and osteophytes.  J Rheumatol. 2002;  29 2597-2601
  • 27 Peterfy C G. Imaging of the disease process.  Curr Opin Rheumatol. 2002;  14 590-596
  • 28 Peterfy C, Li J, Zaim S et al.. Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility.  Skeletal Radiol. 2003;  32 128-132
  • 29 Eckstein F, Reiser M, Englmeier K H et al.. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging-from image to data, from data to theory.  Anat Embryol (Berl). 2001;  203 147-173
  • 30 Buckland-Wright J C, Macfarlane D G, Lynch J A et al.. Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation.  Ann Rheum Dis. 1995;  54 263-268
  • 31 Peterfy C G. Scratching the surface: articular cartilage disorders in the knee.  Magn Reson Imaging Clin N Am. 2000;  8 409-430
  • 32 Peterfy C G. Role of MR imaging in clinical research studies.  Semin Musculoskelet Radiol. 2001;  5 365-378
  • 33 Sumanaweera T, Glover G, Song S et al.. Quantifying MRI geometric distortion in tissue.  Magn Reson Med. 1994;  31 40-47
  • 34 Hudelmaier M, Glaser C, Hohe J et al.. Age-related changes in the morphology and deformational behavior of knee joint cartilage.  Arthritis Rheum. 2001;  44 2556-2561
  • 35 Graichen H, Springer V, Flaman T et al.. Validation of high-resolution water-excitation magnetic resonance imaging for quantitative assessment of thin cartilage layers.  Osteoarthritis Cartilage. 2000;  8 106-114
  • 36 Graichen H, Jakob J, Eisenhart-Rothe R et al.. Validation of cartilage volume and thickness measurements in the human shoulder with quantitative magnetic resonance imaging.  Osteoarthritis Cartilage. 2003;  11 475-482
  • 37 Al Ali D, Graichen H, Faber S et al.. Quantitative cartilage imaging of the human hind foot: precision and inter-subject variability.  J Orthop Res. 2002;  20 249-256
  • 38 Springer V, Graichen H, Stammberger T et al.. [Noninvasive analysis of cartilage volume and cartilage thickness in the human elbow joint using MRI.]  Anat Anz. 1998;  180 331-338
  • 39 Peterfy C G, van Dijke C F, Lu Y et al.. Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging.  AJR Am J Roentgenol. 1995;  165 371-375
  • 40 Burgkart R, Glaser C, Hyhlik-Durr A et al.. Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value.  Arthritis Rheum. 2001;  44 2072-2077
  • 41 Burgkart R, Glaser C, Hinterwimmer S et al.. Feasibility of T and Z scores from magnetic resonance imaging data for quantification of cartilage loss in osteoarthritis.  Arthritis Rheum. 2003;  48 2829-2835
  • 42 Hardy P A, Newmark R, Liu Y M et al.. The influence of the resolution and contrast on measuring the articular cartilage volume in magnetic resonance images.  Magn Reson Imaging. 2000;  18 965-972
  • 43 Link T M, Majumdar S, Peterfy C et al.. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR.  Magn Reson Imaging. 1998;  16 147-155
  • 44 Marshall K W, Guthrie B T, Mikulis D J. Quantitative cartilage imaging.  Br J Rheumatol. 1995;  34(Suppl 1) 29-31
  • 45 Cicuttini F, Forbes A, Asbeutah A et al.. Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume.  J Orthop Res. 2000;  18 580-584
  • 46 Frahm J, Haase A, Matthaei D. Rapid three-dimensional MR imaging using the FLASH technique.  J Comput Assist Tomogr. 1986;  10 363-368
  • 47 Recht M P, Kramer J, Marcelis S et al.. Abnormalities of articular cartilage in the knee: analysis of available MR techniques.  Radiology. 1993;  187 473-478
  • 48 Peterfy C G, van Dijke C F, Janzen D L et al.. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation.  Radiology. 1994;  192 485-491
  • 49 Eckstein F, Gavazzeni A, Sittek H et al.. Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM).  Magn Reson Med. 1996;  36 256-265
  • 50 Hardy P A, Recht M P, Piraino D W. Fat suppressed MRI of articular cartilage with a spatial-spectral excitation pulse.  J Magn Reson Imaging. 1998;  8 1279-1287
  • 51 Glaser C, Faber S, Eckstein F et al.. Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness.  Magn Reson Imaging. 2001;  19 177-185
  • 52 Faber S C, Eckstein F, Lukasz S et al.. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging.  Skeletal Radiol. 2001;  30 144-150
  • 53 Eckstein F, Winzheimer M, Hohe J et al.. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging.  Osteoarthritis Cartilage. 2001;  9 101-111
  • 54 Stammberger T, Eckstein F, Michaelis M et al.. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation.  Magn Reson Imaging. 1999;  17 1033-1042
  • 55 Ateshian G A, Soslowsky L J, Mow V C. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry.  J Biomech. 1991;  24 761-776
  • 56 Ateshian G A. A B-spline least-squares surface-fitting method for articular surfaces of diarthrodial joints.  J Biomech Eng. 1993;  115 366-373
  • 57 Cohen Z A, McCarthy D M, Kwak S D et al.. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements.  Osteoarthritis Cartilage. 1999;  7 95-109
  • 58 Hohe J, Ateshian G, Reiser M et al.. Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo.  Magn Reson Med. 2002;  47 554-561
  • 59 Ateshian G A, Rosenwasser M P, Mow V C. Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints.  J Biomech. 1992;  25 591-607
  • 60 Ahmad C S, Cohen Z A, Levine W N et al.. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee.  Am J Sports Med. 2001;  29 201-206
  • 61 Cohen Z A, Roglic H, Grelsamer R P et al.. Patellofemoral stresses during open and closed kinetic chain exercises. An analysis using computer simulation.  Am J Sports Med. 2001;  29 480-487
  • 62 Cohen Z A, Henry J H, McCarthy D M et al.. Computer simulations of patellofemoral joint surgery: patient-specific models for tuberosity transfer.  Am J Sports Med. 2003;  31 87-98
  • 63 Heegaard J, Leyvraz P F, Curnier A et al.. The biomechanics of the human patella during passive knee flexion.  J Biomech. 1995;  28 1265-1279
  • 64 Eckstein F, Sittek H, Milz S et al.. The potential of magnetic resonance imaging (MRI) for quantifying articular cartilage thickness-a methodological study.  Clin Biomech (Bristol, Avon). 1995;  10 434-440
  • 65 Sittek H, Eckstein F, Gavazzeni A et al.. Assessment of normal patellar cartilage volume and thickness using MRI: an analysis of currently available pulse sequences.  Skeletal Radiol. 1996;  25 55-62
  • 66 Eckstein F, Sittek H, Gavazzeni A et al.. Magnetic resonance chondro-crassometry (MR CCM): a method for accurate determination of articular cartilage thickness?.  Magn Reson Med. 1996;  35 89-96
  • 67 Eckstein F, Schnier M, Haubner M et al.. Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging.  Clin Orthop. 1998;  352 137-148
  • 68 Cohen Z A, Mow V C, Henry J H et al.. Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage.  Osteoarthritis Cartilage. 2003;  11 569-579
  • 69 McGibbon C A, Trahan C A. Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study.  Osteoarthritis Cartilage. 2003;  11 483-493
  • 70 Lösch A, Eckstein F, Haubner M et al.. A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. Part 1: Development of a computational method.  Magn Reson Imaging. 1997;  15 795-804
  • 71 Kshirsagar A A, Watson P J, Tyler J A et al.. Measurement of localized cartilage volume and thickness of human knee joints by computer analysis of three-dimensional magnetic resonance images.  Invest Radiol. 1998;  33 289-299
  • 72 Stammberger T, Hohe J, Englmeier K H et al.. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness.  Magn Reson Med. 2000;  44 592-601
  • 73 Waterton J C, Solloway S, Foster J E et al.. Diurnal variation in the femoral articular cartilage of the knee in young adult humans.  Magn Reson Med. 2000;  43 126-132
  • 74 Lynch J A, Zaim S, Zhao J et al.. Automatic measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation.  Proceedings SPIE. 2001;  4322 431-439 , (International Society for Optical Engineering)
  • 75 Raynauld J P, Kauffmann C, Beaudoin G et al.. Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees.  Osteoarthritis Cartilage. 2003;  11 351-360
  • 76 Cicuttini F, Forbes A, Morris K et al.. Gender differences in knee cartilage volume as measured by magnetic resonance imaging.  Osteoarthritis Cartilage. 1999;  7 265-271
  • 77 Graichen H, von Eisenhart R, Vogl T, Englmeier K H, Eckstein F. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters.  Arthritis Rheum. 2004;  50 811-816
  • 78 Buckland-Wright J C. High definition microfocal radiography and quantitation of radiographic features.  Rev Rhum Engl Ed. 1995;  62 608-609
  • 79 Adams J G, McAlindon T, Dimasi M et al.. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis.  Clin Radiol. 1999;  54 502-506
  • 80 Gale D R, Chaisson C E, Totterman S M et al.. Meniscal subluxation: association with osteoarthritis and joint space narrowing.  Osteoarthritis Cartilage. 1999;  7 526-532
  • 81 Eckstein F, Adam C, Sittek H et al.. Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging.  J Biomech. 1997;  30 285-289
  • 82 Dardzinski B J, Mosher T J, Li S et al.. Spatial variation of T2 in human articular cartilage.  Radiology. 1997;  205 546-550
  • 83 Frank L R, Wong E C, Luh W M et al.. Articular cartilage in the knee: mapping of the physiologic parameters at MR imaging with a local gradient coil-preliminary results.  Radiology. 1999;  210 241-246
  • 84 Eckstein F, Stammberger T, Priebsch J et al.. Effect of gradient and section orientation on quantitative analysis of knee joint cartilage.  J Magn Reson Imaging. 2000;  11 161-167
  • 85 McGibbon C A, Dupuy D E, Palmer W E et al.. Cartilage and subchondral bone thickness distribution with MR imaging.  Acad Radiol. 1998;  5 20-25
  • 86 Glüer C C, Blake G, Lu Y et al.. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques.  Osteoporos Int. 1995;  5 262-270
  • 87 Eckstein F, Heudorfer L, Faber S C et al.. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI).  Osteoarthritis Cartilage. 2002;  10 922-928
  • 88 Hyhlik-Dürr A, Faber S, Burgkart R et al.. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence.  Eur Radiol. 2000;  10 297-303
  • 89 Eckstein F, Lemberger B, Stammberger T et al.. Patellar cartilage deformation in vivo after static versus dynamic loading.  J Biomech. 2000;  33 819-825
  • 90 Glaser C, Burgkart R, Kutschera A et al.. Femoro-tibial cartilage metrics from coronal MR image data: Technique, test-retest reproducibility and findings in osteoarthritis.  Magn Reson Med. 2003;  50 1229-1236
  • 91 Wluka A E, Stuckey S, Snaddon J et al.. The determinants of change in tibial cartilage volume in osteoarthritic knees.  Arthritis Rheum. 2002;  46 2065-2072
  • 92 Cicuttini F, Wluka A, Wang Y et al.. Longitudinal study of changes in tibial and femoral cartilage in knee osteoarthritis.  Arthritis Rheum. 2004;  43 321-324
  • 93 Glaser C, Draeger M, Englmeier K H et al.. Cartilage loss over two years in femorotibial osteoarthritis.  Radiology. 2002;  225(Suppl) 330 [Abstract]
  • 94 Vanwanseele B, Eckstein F, Knecht H et al.. Longitudinal analysis of cartilage atrophy in the knees of spinal cord injured patients.  Arthritis Rheum. 2003;  48 3377-3381
  • 95 Wluka A E, Stuckey S, Brand C et al.. Supplementary vitamin e does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study.  J Rheumatol. 2002;  29 2585-2591
  • 96 Cicuttini F M, Forbes A, Yuanyuan W et al.. Rate of knee cartilage loss after partial meniscectomy.  J Rheumatol. 2002;  29 1954-1956
  • 97 Gandy S J, Dieppe P A, Keen M C et al.. No loss of cartilage volume over three years in patients with knee osteoarthritis as assessed by magnetic resonance imaging.  Osteoarthritis Cartilage. 2002;  10 929-937
  • 98 Raynauld J P, Martel-Pelletier J, Berthiaume M J et al.. Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes.  Arthritis Rheum. 2004;  50 476-487
  • 99 Stammberger T, Eckstein F, Englmeier K H et al.. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living.  Magn Reson Med. 1999;  41 529-556
  • 100 Eckstein F, Westhoff J, Sittek H et al.. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging.  AJR Am J Roentgenol. 1998;  170 593-597
  • 101 Eckstein F, Tieschky M, Faber S C et al.. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study.  Radiology. 1998;  207 243-248
  • 102 Tieschky M, Faber S, Haubner M et al.. Repeatability of patellar cartilage thickness patterns in the living, using a fat-suppressed magnetic resonance imaging sequence with short acquisition time and three-dimensional data processing.  J Orthop Res. 1997;  15 808-813
  • 103 Herberhold C, Stammberger T, Faber S et al.. An MR-based technique for quantifying the deformation of articular cartilage during mechanical loading in an intact cadaver joint.  Magn Reson Med. 1998;  39 843-850
  • 104 Herberhold C, Faber S, Stammberger T et al.. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading.  J Biomech. 1999;  32 1287-1295
  • 105 Eckstein F, Tieschky M, Faber S et al.. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo.  Anat Embryol (Berl). 1999;  200 419-424
  • 106 Eckstein F, Lemberger B, Stammberger T et al.. Patellar cartilage deformation in vivo after static versus dynamic loading.  J Biomech. 2000;  33 819-825
  • 107 Papa E, Cappozzo A. Sit-to-stand motor strategies investigated in able-bodied young and elderly subjects.  J Biomech. 2000;  33 1113-1122
  • 108 Takahashi M, Hoshino H, Kushida K et al.. Direct measurement of crosslinks, pyridinoline, deoxypyridinoline, and pentosidine, in the hydrolysate of tissues using high-performance liquid chromatography.  Anal Biochem. 1995;  232 158-162
  • 109 Brama P A, TeKoppele J M, Bank R A et al.. Influence of site and age on biochemical characteristics of the collagen network of equine articular cartilage.  Am J Vet Res. 1999;  60 341-345
  • 110 Chen A C, Temple M M, Ng D M et al.. Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage.  Arthritis Rheum. 2002;  46 3212-3217
  • 111 Saudek D M, Kay J. Advanced glycation endproducts and osteoarthritis.  Curr Rheumatol Rep. 2003;  5 33-40
  • 112 Verzijl N, DeGroot J, Ben Z C et al.. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis.  Arthritis Rheum. 2002;  46 114-123
  • 113 Burstein D, Gray M. New MRI techniques for imaging cartilage.  J Bone Joint Surg Am. 2003;  85-A(Suppl 2) 70-77
  • 114 Sitoci K H, Hudelmaier M, Glaser C et al.. Nocturnal changes of cartilage morphology in healthy subjects.  Osteoarthritis Cartilage. 2003;  11(Suppl. A) S95 , [Abstract]
  • 115 Adam C, Eckstein F, Milz S et al.. The distribution of cartilage thickness in the knee-joints of old-aged individuals-measurement by A-mode ultrasound.  Clin Biomech (Bristol, Avon). 1998;  13 1-10
  • 116 Jones G, Glisson M, Hynes K et al.. Sex and site differences in cartilage development: a possible explanation for variations in knee osteoarthritis in later life.  Arthritis Rheum. 2000;  43 2543-2549
  • 117 Hudelmaier M, Glaser C, Englmeier K H et al.. Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables.  Anat Rec. 2003;  270A 175-184
  • 118 Cicuttini F M, Wluka A E, Wang Y et al.. Compartment differences in knee cartilage volume in healthy adults.  J Rheumatol. 2002;  29 554-556
  • 119 Cicuttini F M, Wluka A E, Forbes A et al.. Comparison of tibial cartilage volume and radiologic grade of the tibiofemoral joint.  Arthritis Rheum. 2003;  48 682-688
  • 120 Eckstein F, Muller S, Faber S C et al.. Side differences of knee joint cartilage volume, thickness, and surface area, and correlation with lower limb dominance-an MRI-based study.  Osteoarthritis Cartilage. 2002;  10 914-921
  • 121 Cicuttini F M, Wluka A E, Stuckey S L. Tibial and femoral cartilage changes in knee osteoarthritis.  Ann Rheum Dis. 2001;  60 977-980
  • 122 Meachim G. Effect of age on the thickness of adult articular cartilage at he shoulder joint.  Ann Rheum Dis. 1971;  30 43-46
  • 123 Meachim G, Bentley G, Baker R. Effect of age on thickness of adult patellar articular cartilage.  Ann Rheum Dis. 1977;  36 563-568
  • 124 Karvonen R L, Negendank W G, Teitge R A et al.. Factors affecting articular cartilage thickness in osteoarthritis and aging.  J Rheumatol. 1994;  21 1310-1318
  • 125 Eckstein F, Winzheimer M, Westhoff J et al.. Quantitative relationships of normal cartilage volumes of the human knee joint-assessment by magnetic resonance imaging.  Anat Embryol (Berl). 1998;  197 383-390
  • 126 Vanwanseele B, Lucchinietti E, Stussi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions.  Osteoarthritis Cartilage. 2002;  10 408-419
  • 127 Newton P M, Mow V C, Gardner T R et al.. Winner of the 1996 Cabaud Award. The effect of lifelong exercise on canine articular cartilage.  Am J Sports Med. 1997;  25 282-287
  • 128 Helminen H J, Kiviranta I, Sämänen A M et al.. Effect of motion and load on articular cartilage in animal models. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC Articular Cartilage and Osteoarthritis New York; Raveen Press 1992: 501-510
  • 129 Jones G, Ding C, Glisson M et al.. Knee articular cartilage development in children: a longitudinal study of the effect of sex, growth, body composition, and physical activity.  Pediatr Res. 2003;  54 230-236
  • 130 Eckstein F, Faber S, Muhlbauer R et al.. Functional adaptation of human joints to mechanical stimuli.  Osteoarthritis Cartilage. 2002;  10 44-50
  • 131 Mühlbauer R, Lukasz T S, Faber T S et al.. Comparison of knee joint cartilage thickness in triathletes and physically inactive volunteers based on magnetic resonance imaging and three-dimensional analysis.  Am J Sports Med. 2000;  28 541-546
  • 132 Carter D R, Wong M, Orr T E. Musculoskeletal ontogeny, phylogeny, and functional adaptation.  J Biomech. 1991;  24(Suppl 1) 3-16
  • 133 Vanwanseele B, Eckstein F, Knecht H et al.. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement.  Arthritis Rheum. 2002;  46 2073-2078
  • 134 Genant H K, Engelke K, Fuerst T et al.. Noninvasive assessment of bone mineral and structure: state of the art.  J Bone Miner Res. 1996;  11 707-730
  • 135 Buckland-Wright J C, Macfarlane D G, Lynch J A et al.. Quantitative microfocal radiography detects changes in OA knee joint space width in patients in placebo controlled trial of NSAID therapy.  J Rheumatol. 1995;  22 937-943
  • 136 Cicuttini F, Wluka A, Wang Y et al.. The determinants of change in patella cartilage volume in osteoarthritic knees.  J Rheumatol. 2002;  29 2615-2619
  • 137 Piplani M A, Disler D G, McCauley T R et al.. Articular cartilage volume in the knee: semiautomated determination from three-dimensional reformations of MR images.  Radiology. 1996;  198 855-859
  • 138 Solloway S, Hutchinson C E, Waterton J C et al.. The use of active shape models for making thickness measurements of articular cartilage from MR images.  Magn Reson Med. 1997;  37 943-952
  • 139 Ghosh S, Ries M, Lane N et al.. Segmentation of high resolution articular cartilage MR images.  Transactions of the Orthopedic Res Soc (ORS). 2000;  246 , [Abstract]
  • 140 Steines D, Cheng C, Wong A et al.. Segmentation of osteoarthritic femoral cartilage from MR images. Proc of Computer Assisted Radiology and Surgery 14th International Congress 2000: 303-308
  • 141 Lynch J A, Zaim S, Zhao J et al.. Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining juser knowledge and active contours.  Proceedings SPIE. 2000;  3979 925-935 , (International Society for Optical Engineering)
  • 142 Kauffmann C, Gravel P, Godbout B et al.. Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model.  IEEE Trans Biomed Eng. 2003;  50 978-988
  • 143 Münsterer O J, Eckstein F, Hahn D et al.. Computer-aided three dimensional assessment of knee-joint cartilage with magnetic resonance imaging.  Clin Biomech (Bristol, Avon). 1996;  11 260-266
  • 144 Hardy P A, Nammalwar P, Kuo S. Measuring the thickness of articular cartilage from MR images.  J Magn Reson Imaging. 2001;  13 120-126
  • 145 Kladny B, Bail H, Swoboda B et al.. Cartilage thickness measurement in magnetic resonance imaging.  Osteoarthritis Cartilage. 1996;  4 181-186
  • 146 Pilch L, Stewart C, Gordon D et al.. Assessment of cartilage volume in the femorotibial joint with magnetic resonance imaging and 3D computer reconstruction.  J Rheumatol. 1994;  21 2307-2321
  • 147 Stammberger T, Herberhold C, Faber S et al.. A method for quantifying time dependent changes in MR signal intensity of articular cartilage as a function of tissue deformation in intact joints. Med Eng Physiol 1998 20: 741-749
  • 148 Liess C, Lüsse S, Karger N et al.. Detection of changes in cartilage water content using MRI T2-mapping in vivo.  Osteoarthritis Cartilage. 2002;  10 907-913
  • 149 Wluka A E, Davis S R, Bailey M et al.. Users of oestrogen replacement therapy have more knee cartilage than non-users.  Ann Rheum Dis. 2001;  60 332-336
  • 150 Cicuttini F M, Wluka A E, Wang Y et al.. Compartment differences in knee cartilage volume in healthy adults.  J Rheumatol. 2002;  29 554-556

 Unv. Prof. Dr. med.
Felix Eckstein

Institute of Anatomy and Musculoskeletal Research, Paracelsus Private Medical University Salzburg

Strubergasse 21k, A 5020 Salzburg, Austria

    >