Zusammenfassung
Die Fortschritte der letzten Jahre auf dem Gebiet der Molekularbiologie und bei der
Entwicklung bildgebender Verfahren haben in der bildgebenden Diagnostik zu einem Paradigmenwechsel
geführt. Die traditionelle Rolle der radiologischen Diagnostik liegt in der Darstellung
pathologischer Veränderungen auf anatomisch-morphologischer Ebene. Die derzeit zur
Verfügung stehenden Kontrastmittel sind meist unspezifisch und somit nicht zur Darstellung
pathologischer Veränderungen auf molekularer Ebene geeignet. Alterationen auf anatomisch-morphologischer
Ebene sind jedoch relativ späte Manifestationen von initial molekularen Veränderungen.
Mit Hilfe von Kontrastmitteln, die spezifisch an molekulare Zielstrukturen binden,
können biologische Prozesse nicht-invasiv auf molekularer Ebene sichtbar gemacht und
quantitativ erfasst werden. Diese Technologie, die mit dem Begriff molekulare Bildgebung
umschrieben wird, verspricht, eine frühere Diagnose, eine verbesserte Klassifizierung
von Stadium und Schwere der Erkrankung, eine objektive Beurteilung des Behandlungserfolges
und eine zuverlässige Prognose zu ermöglichen. Zudem ist die molekulare Bildgebung
ein wichtiges Werkzeug für die Evaluierung physiologischer und pathophysiologischer
Prozesse sowie für die Entwicklung neuer Therapien. Der vorliegende Artikel gibt eine
Übersicht über den aktuellen Stand der molekularen Bildgebung, beschreibt die Entwicklung
von Kontrastmitteln und die bildgebenden Verfahren für die molekulare Bildgebung,
neue Anwendungen bei spezifischen Krankheitsmodellen sowie zukünftige Entwicklungen.
Abstract
The recent years have seen significant advances in both molecular biology, allowing
the identification of genes and pathways related to disease, and imaging technologies
that allow for improved spatial and temporal resolution, enhanced sensitivity, better
depth penetration, improved image processing, and beneficial combinations of different
imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic
imaging. The traditional role of radiological diagnostic imaging is to define gross
anatomy and structure in order to detect pathological abnormalities. Available contrast
agents are mostly non-specific and can be used to image physiological processes such
as changes in blood volume, flow, and perfusion but not to demonstrate pathological
alterations at molecular levels. However, alterations at the anatomical-morphological
level are relatively late manifestations of underlying molecular changes. Using molecular
probes or markers that bind specifically to molecular targets allows for the non-invasive
visualization and quantitation of biological processes such as gene expression, apoptosis,
or angiogenesis at the molecular level within intact living organisms. This rapidly
evolving, multidisciplinary approach, referred to as molecular imaging, promises to
enable early diagnosis, can provide improved classification of stage and severity
of disease, an objective assessment of treatment efficacy, and a reliable prognosis.
Furthermore, molecular imaging is an important tool for the evaluation of physiological
and pathophysiological processes, and for the development of new therapies. This article
comprises a review of current technologies of molecular imaging, describes the development
of contrast agents and various imaging modalities, new applications in specific disease
models, and potential future developments.
Key words
Targeted contrast agents - CT - MRT - nuclear medicine - optical imaging - ultrasound
Literatur
1
Weissleder R, Mahmood U.
Molecular imaging.
Radiology.
2001;
219
316-333
2
Massoud T F, Gambhir S S.
Molecular imaging in living subjects: seeing fundamental biological processes in a
new light.
Genes Dev.
2003;
17
545-580
3
Weissleder R.
Scaling down imaging: molecular mapping of cancer in mice.
Nat Rev Cancer.
2002;
2
11-18
4
Weissleder R, Tung C H, Mahmood U. et al .
In vivo imaging of tumors with protease-activated near-infrared fluorescent probes.
Nat Biotechnol.
1999;
17
375-378
5
Wunder A, Grimm J, Müller-Ladner U.
Molekulare Bildgebung bei rheumatoider Arthritis.
Z Rheumatol.
2003;
62
II33-II36
6
Louie A Y, Huber M M, Ahrens E T. et al .
In vivo visualization of gene expression using magnetic resonance imaging.
Nat Biotechnol.
2000;
18
321-325
7
Bogdanov A Jr, Matuszewski L, Bremer C. et al .
Oligomerization of paramagnetic substrates result in signal amplification and can
be used for MR imaging of molecular targets.
Mol Imaging.
2002;
1
16-23
8
Perez J M, Josephson L, O’Loughlin T. et al .
Magnetic relaxation switches capable of sensing molecular interactions.
Nat Biotechnol.
2002;
20
816-820
9
Lindsay M A.
Target discovery.
Nat Rev Drug Discov.
2003;
2
831-838
10
Blankenberg F G, Strauss H W.
Nuclear medicine applications in molecular imaging.
J Magn Reson Imaging.
2002;
16
352-361
11
Hnatowich D J.
Observations on the role of nuclear medicine in molecular imaging.
J Cell Biochem Suppl.
2002;
39
18-24
12
Weissleder R, Ntziachristos V.
Shedding light onto live molecular targets.
Nat Med.
2003;
9
123-128
13
Bremer C, Ntziachristos V, Weissleder R.
Optical-based molecular imaging: contrast agents and potential medical applications.
Eur Radiol.
2003;
13
231-243
14
McCaffrey A, Kay M A, Contag C H.
Advancing molecular therapies through in vivo bioluminescent imaging.
Mol Imaging.
2003;
2
75-86
15
Contag C H, Ross B D.
It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology.
J Magn Reson Imaging.
2002;
16
378-387
16
Aime S, Cabella C, Colombatto S. et al .
Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations.
J Magn Reson Imaging.
2002;
16
394-406
17
Artemov D.
Molecular magnetic resonance imaging with targeted contrast agents.
J Cell Biochem.
2003;
90
518-524
18
Taupitz M, Schmitz S, Hamm B.
Superparamagnetische Eisenoxidpartikel: Aktueller Stand und zukünftige Entwicklungen.
Fortschr Röntgenstr.
2003;
175
752-765
19
Ritman E L.
Molecular imaging in small animals - roles for micro-CT.
J Cell Biochem Suppl.
2002;
39
116-124
20
Dayton P A, Ferrara K W.
Targeted imaging using ultrasound.
J Magn Reson Imaging.
2002;
16
362-377
21
Lindner J R.
Molecular imaging with contrast ultrasound and targeted microbubbles.
J Nucl Cardiol.
2004;
11
215-221
22
Boerman O C, van Schaijk F G, Oyen W J. et al .
Pretargeted radioimmunotherapy of cancer: progress step by step.
J Nucl Med.
2003;
44
400-411
23
Tjuvajev J G, Finn R, Watanabe K. et al .
Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression:
a potential method for monitoring clinical gene therapy.
Cancer Res.
1996;
56
4087-4095
24
Gambhir S S, Barrio J R, Herschman M R. et al .
Assays for non-invasive imaging of reporter gene expression.
Nucl Med Biol.
1999;
26
481-490
25
Alavi A, Kung J W, Zhuang H.
Implications of PET based molecular imaging on the current and future practice of
medicine.
Sem Nucl Med.
2004;
34
56-69
26
Acton P D, Kung H F.
Small animal imaging with high resolution single photon emission tomography.
Nucl Med Biol.
2003;
30
889-895
27
Blankenberg F, Mari C, Strauss H W.
Imaging cell death in vivo.
Q J Nucl Med.
2003;
47
337-348
28
Dewanjee M K, Ghafouripour A K, Kapadvanjwala M. et al .
Kinetics of hybridization of mRNA of c-myc oncogene with 111In-labeled antisense oligodeoxynucleotide
probes by high-pressure liquid chromatography.
Biotechniques.
1994;
16
844-846, 848, 850
29
Bocklet D, Toungouz M, Kiss R. et al .
111In-oxine and 99 mTC-HMPAO labelling of antigen-loaded dentritic cells: in vivo
imaging and influence on motility and actin content.
Eur J Nucl Med.
2003;
30
440-447
30
Adams C L, Kobets N, Meiklejohn G R. et al .
Tracking lymphocytes in vivo.
Arch Immunol Ther Exp (Warsz).
2004;
52
173-187
31
Voura E B, Jaiswal J K, Mattoussi H. et al .
Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence
emission-scanning microscopy.
Nat Med.
2004;
10
993-998
32
Cai J, Limke T L, Ginis I. et al .
Identifying and tracking neural stem cells.
Blood Cells Mol Dis.
2003;
31
18-27
33
Ntziachristos V, Tung C H, Bremer C. et al .
Fluorescence molecular tomography resolves protease activity in vivo.
Nat Med.
2002;
8
757-760
34
Ntziachristos V, Bremer C, Tung C H. et al .
Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated
tomography (FMT).
Acad Radiol.
2002;
9 (Suppl 2)
S323-S325
35
Funovics M A, Weissleder R, Mahmood U.
Catheter-based in vivo imaging of enzyme activity and gene expression: feasibility
study in mice.
Radiology.
2004;
231
659-666
36
Slakter J S, Yannuzzi L A, Guyer D R. et al .
Indocyanine-green angiography.
Curr Opin Ophthalmol.
1995;
6
25-32
37
Ballou B, Fisher G W, Hakala D R. et al .
Tumor detection and visualization using cyanine fluorochrome-labeled antibodies.
Biotechnol Prog.
1997;
13
649-658
38
Becker A, Hessenius C, Licha K. et al .
Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.
Nat Biotechnol.
2001;
19
327-331
39
Petrovsky A, Schellenberger E, Josephson L. et al .
Near-infrared fluorescent imaging of tumor apoptosis.
Cancer Res.
2003;
63
1936-1942
40
Wunder A, Schellenberger E, Mahmood U. et al .
Methotrexate induced accumulation of fluorescent annexin V in collagen induced arthritis.
Mol Imag.
2005 (in press);
41
Bremer C, Tung C H, Weissleder R.
In vivo molecular target assessment of matrix metalloproteinase inhibition.
Nat Med.
2001;
7
743-748
42
Wunder A, Tung C H, Müller-Ladner U. et al .
In vivo imaging of protease activity in arthritis: a novel approach for monitoring
treatment response.
Arthritis Rheum.
2004;
50
2459-2465
43
Tang Y, Shah K, Messerli S M. et al .
In vivo tracking of neural progenitor cell migration to glioblastomas.
Hum Gene Ther.
2003;
14
1247-1254
44
Ray P, A, Min J J. et al .
Imaging tri-fusion multimodality reporter gene expression in living subjects.
Cancer Res.
2004;
64
1323-1330
45 Reimer P, Parizel PM, Stichnoth FA (eds) .Klinische MR-Bildgebung. Berlin; Springer
2003
46
Alfke H, Kohle S, Maurer E. et al .
Analyse von Maustumormodellen mittels dynamischer MRT und einer dedizierten Softwareplattform.
Fortschr Röntgenstr.
2004;
176
1226-1231
47
Herborn C U, Papanikolaou N, Reszka R. et al .
Magnetosomen als biologisches Modell der Eisenbindung: Messung der Relaxivität in
der MRT.
Fortschr Röntgenstr.
2003;
175
830-834
48
Högemann D, Ntziachristos V, Josephson L. et al .
High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes.
Bioconjug Chem.
2002;
13
116-121
49
Grimm J, Perez J M, Josephson L. et al .
Novel nanosensors for rapid analysis of telomerase activity.
Cancer Res.
2004;
64
639-643
50
Weissleder R, Moore A, Mahmood U. et al .
In vivo magnetic resonance imaging of transgene expression.
Nat Med.
2000;
6
351-355
51
Weissleder R, Simonova M, Bogdanova A. et al .
MR imaging and scintigraphy of gene expression through melanin induction.
Radiology.
1997;
204
425-429
52
Kircher M F, Allport J R, Graves E E. et al .
In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte
trafficking to tumors.
Cancer Res.
2003;
63
6838-6846
53
Moore M, Grimm J, Han B. et al .
Tracking the recruitment of diabetogenic CD8 + T-cells to the pankreas in real time.
Diabetes.
2004;
53
1459-1466
54 Prokop M, Galanski M, van der Molen A J. et al .Spiral and multislice computed
tomography of the body. Stuttgart, New York; Thieme 2003
55
Hetzel G.
Neue technische Entwicklungen auf dem Gebiet des Ultraschalls.
Radiologe.
2003;
43
777-792
56
Lindner J R.
Molecular imaging with contrast ultrasound and targeted microbubbles.
J Nucl Cardiol.
2004;
11
215-221
57
Ellegala D B, Leong-Poi H, Carpenter J E. et al .
Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3.
Circulation.
2003;
108
336-341
58
Kondo I, Ohmori K, Oshita A. et al .
Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer:
the first demonstration of myocardial transfer of a „functional” gene using ultrasonic
microbubble destruction.
J Am Coll Cardiol.
2004;
44
644-653
59
Shimamura M, Sato N, Taniyama Y. et al .
Development of efficient plasmid DNA transfer into adult rat central nervous system
using microbubble-enhanced ultrasound.
Gene Ther.
2004;
11
1532-1539
60
Cherry S R.
In vivo molecular and genomic imaging: new challenges for imaging physics.
Phys Med Biol.
2004;
49
R13-R48
PD Dr. rer. nat. Andreas Wunder
Zentrum für Medizinische Biotechnologie (ZMB) im BioPark Regensburg, Bereich Rheumatologie/Klinische
Immunologie, Klinik und Poliklinik für Innere Medizin I, Universität Regensburg
Josef-Engert-Straße 9
93053 Regensburg
Phone: ++ 49/9 41/9 43-16 27
Fax: ++ 49/9 41/9 44-70 04
Email: andreas.wunder@klinik.uni-regensburg.de