Rofo 2005; 177(7): 935-939
DOI: 10.1055/s-2005-858295
Rapid Communication

© Georg Thieme Verlag KG Stuttgart · New York

Differentiation of Prostate Cancer from Normal Prostate Tissue in an Animal Model: Conventional MRI and Dynamic Contrast-enhanced MRI

Differenzierung des Prostatakarzinoms gegenüber normalem Drüsengewebe der Prostata am Tiermodell: konventionelle MRT-Bildgebung und dynamische kontrastmittelunterstützte MRTO. Gemeinhardt1 , L. Lüdemann2 , D. Prochnow1 , C. Abramjuk3 , M. Taupitz1 , B. Hamm1 , D. Beyersdorff1
  • 1Institut für Radiologie, Charité - für Universitätsmedizin Berlin, Campus Mitte
  • 2Klinik für Strahlenheilkunde, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum
  • 3Klinik für Urologie, Charité - Universitätsmedizin Berlin, Campus Mitte
Further Information

Publication History

Publication Date:
22 June 2005 (online)

Zusammenfassung

Ziel: Ziel war die Differenzierung von orthotop implantiertem Prostatakarzinom und normalem Drüsengewebe der Prostata nativ und mittels Gd-DTPA-BMA-unterstützter dynamischer MRT am Rattenmodell. Material und Methoden: Bei 15 Ratten wurden Dunning-Tumorzellen der Sublinie G orthotop in die Prostata implantiert. Die MRT-Untersuchungen erfolgten 56 bis 60 Tage nach Tumorzellimplantation mittels T1 w SE-, T2 w TSE-Sequenzen und einer 2D-FLASH-Sequenz für die kontrastmittelbasierten dynamischen Untersuchungen. Das interstitielle Leckvolumen, die normalisierte Permeabilität und das Permeabilitätsoberflächenprodukt von Tumor und gesundem Prostatagewebe wurden mittels pharmakokinetischer Modellierung quantitativ bestimmt. Die Ergebnisse wurden durch histologische Untersuchungen bestätigt. Ergebnisse: Axiale T2 w TSE-Bilder stellten hypointense tumorverdächtige Areale in allen 15 Tieren dar. Das Tumorvolumen betrug im Durchschnitt 46,5 mm3. In der dynamischen Sequenz konnte bei allen Tieren in den tumorsuspekten Arealen ein beschleunigter sowie ein erhöhter Anstieg der Signalintensität im Vergleich zum umgebenden Prostatagewebe festgestellt werden. Das interstitielle Volumen und das Permeabilitätsoberflächenprodukt im Tumor zeigten einen signifikanten Anstieg von 420 % (p < 0,001) und 424 % (p < 0,001) gegenüber normalem Prostatagewebe, während bei der normalisierten Permeabilität allein kein signifikanter Unterschied festgestellt werden konnte. Schlussfolgerung: Die Ergebnisse der vorliegenden Studie zeigen, dass sich mit quantitativer Analyse von kontrastmittelunterstützten dynamischen MRT-Daten ein kleines langsam gewachsenes orthotopes Prostatakarzinom von normalem Prostatagewebe im Rattenmodell differenzieren lässt.

Abstract

Purpose: To differentiate orthotopically implanted prostate cancer from normal prostate tissue using magnetic resonance imaging (MRI) and Gd-DTPA-BMA-enhanced dynamic MRI in the rat model. Material and Methods: Tumors were induced in 15 rats by orthotopic implantation of G subline Dunning rat prostatic tumor cells. MRI was performed 56 to 60 days after tumor cell implantation using T1-weighted spin-echo, T2-weighted turbo SE sequences, and a 2D FLASH sequence for the contrast medium based dynamic study. The interstitial leakage volume, normalized permeability and the permeability surface area product of tumor and healthy prostate were determined quantitatively using a pharmacokinetic model. The results were confirmed by histologic examination. Results: Axial T2-weighted TSE images depicted low-intensity areas suspicious for tumor in all 15 animals. The mean tumor volume was 46.5 mm3. In the dynamic study, the suspicious areas in all animals displayed faster and more pronounced signal enhancement than surrounding prostate tissue. The interstitial volume and the permeability surface area product of the tumors increased significantly by 420 % (p < 0.001) and 424 % (p < 0.001), respectively, compared to normal prostate tissue, while no significant difference was seen for normalized permeability alone. Conclusion: The results of the present study demonstrate that quantitative analysis of contrast-enhanced dynamic MRI data enables differentiation of small, slowly growing orthotopic prostate cancer from normal prostate tissue in the rat model.

References

  • 1 Barentsz J O, Engelbrecht M, Jager G J. et al . Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer.  J Magn Reson Imaging. 1999;  10 295-304
  • 2 Engelbrecht M R, Huisman H J, Laheij R J. et al . Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging.  Radiology. 2003;  229 248-254
  • 3 Gossmann A, Okuhata Y, Shames D M. et al . Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media - preliminary experience.  Radiology. 1999;  213 265-272
  • 4 Kiessling F, Huber P E, Grobholz R. et al . Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy.  Invest Radiol. 2004;  39 34-44
  • 5 Lein M, Jung K, Le D K. et al . Synthetic inhibitor of matrix metalloproteinases (batimastat) reduces prostate cancer growth in an orthotopic rat model.  Prostate. 2000;  43 77-82
  • 6 Isaacs J T, Isaacs W B, Feitz W F. et al . Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers.  Prostate. 1986;  9 261-281
  • 7 Dethlefsen L A, Prewitt J M, Mendelsohn M L. Analysis of tumor growth curves.  J Natl Cancer Inst. 1968;  40 389-405
  • 8 Tofts P S, Brix G, Buckley D L. et al . Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.  J Magn Reson Imaging. 1999;  10 223-232
  • 9 Folkman J, Watson K, Ingber D. et al . Induction of angiogenesis during the transition from hyperplasia to neoplasia.  Nature. 1989;  339 58-61
  • 10 Schlemmer H P, Merkle J, Grobholz R. et al . Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?.  Eur Radiol. 2004;  14 309-317
  • 11 Siegal J A, Yu E, Brawer M K. Topography of neovascularity in human prostate carcinoma.  Cancer. 1995;  75 2545-2551
  • 12 Jager G J, Ruijter E T, van de Kaa C A. et al . Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results.  Radiology. 1997;  203 645-652
  • 13 Rouviere O, Raudrant A, Ecochard R. et al . Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging.  Eur Radiol. 2003;  13 931-942
  • 14 Hebel R, Stromberg M W. Anatomy and Embryology of the Laboratory Rat. Wörthsee; BioMed Verlag 1986: 75-76
  • 15 Naik K S, Carey B M. The transrectal ultrasound and MRI appearances of granulomatous prostatitis and its differentiation from carcinoma.  Clin Radiol. 1999;  54 173-175

Ole Gemeinhardt

Institut für Radiologie, Charité - Universitätsmedizin Berlin, Campus Mitte

Schumannstraße 20/21

10117 Berlin

Phone: ++ 49/30/4 50 52 72 25

Fax: ++ 49/30/450 527 901

Email: ole.gemeinhardt@charite.de

    >