Horm Metab Res 2005; 37(3): 133-139
DOI: 10.1055/s-2005-861290
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Zinc Fluxes during Acute and Chronic Exposure of INS-1E Cells to Increasing Glucose Levels

L.  G.  Søndergaard1 , B.  Brock2 , M.  Stoltenberg1 , A.  Flyvbjerg3 , O.  Schmitz2, 3 , K.  Smidt2 , G.  Danscher1 , J.  Rungby2, 4
  • 1Institute of Anatomy, University of Aarhus
  • 2Department of Clinical Pharmacology, University of Aarhus
  • 3Medical Department M, Aarhus University Hospital, Denmark
  • 4Medical Department C, Aarhus University Hospital, Denmark
Further Information

Publication History

Received 21 June 2004

Accepted after revision 2 September 2004

Publication Date:
12 April 2005 (online)

Abstract

Zinc in beta-cell secretory vesicles is essential for insulin hexamerization, and tight vesicular zinc regulation is mandatory. Little is known about zinc ion fluxes across the secretory vesicle membrane and the influence of changes in the extracellular environment on vesicular zinc. Our study aim was to investigate the effect of acute and chronic exposure to various glucose concentrations on zinc in secretory vesicles, the relation between zinc and insulin, and the presence of two zinc transporters, ZnT1 and ZnT4, in INS-1E cells. Zinc ions were demonstrated and semi-quantified using zinc-sulfide autometallography. Insulin content and secreted insulin were measured. Measurements were made on INS-1E cells after exposure to 2.0, 6.6, 16.7, and 24.6 mmol/l glucose for 1, 24, and 96 hours. 1h: Increasing glucose resulted in no changes in intravesicular zinc ions at 2, and 24.6 mmol/l glucose, but a slight increase at 16.7 mmol/l glucose. 24 and 96 h: Increasing glucose led to decreased vesicular zinc ion content accompanied by a decrease in insulin content. ZnT1 and ZnT4 were present in the cytoplasm. Our results demonstrate that intra-vesicular zinc ions respond to changes in the extra-cellolar glucose concentration, especially during chronic high glucose concentrations, where the content of vesicular zinc ions decreases.

References

  • 1 Vallee B L, Falchuk K H. The biochemical basis of zinc physiology.  Physiol Rev. 1993;  73 9-118
  • 2 Emdin S O, Dodson G G, Cutfield J M, Cutfield S M. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell.  Diabetologia. 1980;  19 174-182
  • 3 Dodson G, Steiner D. The role of assembly in insulin's biosynthesis.  Curr Opin Struct Biol. 1998;  8 189-194
  • 4 Gold G, Grodsky G M. Kinetic aspects of compartmental storage and secretion of insulin and zinc.  Experientia. 1984;  40 1105-1114
  • 5 Kim B J, Kim Y H, Kim S, Kim J W, Koh J Y, Oh S H, Lee M K, Kim K W, Lee M S. Zinc as a paracrine effector in pancreatic islet cell death.  Diabetes. 2000;  49 367-372
  • 6 Chang I, Cho N, Koh J Y, Lee M S. Pyruvate inhibits zinc-mediated pancreatic islet cell death and diabetes.  Diabetologia. 2003;  46 1220-1227
  • 7 Ishihara H, Maechler P, Gjinovci A, Herrera P L, Wollheim C B. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells.  Nat Cell Biol. 2003;  5 330-335
  • 8 Chimienti F, Aouffen M, Favier A, Seve M. Zinc Homeostasis-regulating Proteins: New Drug Targets for Triggering Cell Fate.  Curr Drug Targets. 2003;  4 323-338
  • 9 Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M. Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells.  J Biol Chem. 2002;  277 19 049 -19 055
  • 10 Palmiter R D, Huang L. Efflux and compartmentalization of zinc by members of the SLC family of solute carriers.  Eur J Physiol. 2004;  447 744-751
  • 11 Clifford K S, MacDonald M J. Survey of mRNAs encoding zinc transporters and other metal complexing proteins in pancreatic islets of rats from birth to adulthood: similar patterns in the Sprague-Dawley and Wistar BB strains.  Diabetes Res Clin Pract. 2000;  49 77-85
  • 12 Chausmer A B. Zinc, insulin and diabetes.  J Am Coll Nutr. 1998;  17 109-115
  • 13 Asfari M, Janjic D, Meda P, Li G, Halban P A, Wollheim C B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines.  Endocrinology. 1992;  130 167-178
  • 14 Danscher G. Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy.  Histochem. 1981;  71 1-16
  • 15 Foster M C, Leapman R D, Li M X, Atwater I. Elemental composition of secretory granules in pancreatic islets of Langerhans.  Biophys J. 1993;  64 525-532
  • 16 Figlewicz D P, Forhan S E, Hodgson A T, Grodsky G M. 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content.  Endocrinology. 1984;  115 77-881
  • 17 Andersson T, Berggren P O, Flatt P R. Subcellular distribution of zinc in islet beta-cell fractions.  Horm Metab Res. 1980;  12 275-276
  • 18 Figlewicz D P, Formby B, Hodgson A T, Schmid F G, Grodsky G M. Kinetics of 65zinc uptake and distribution in fractions from cultured rat islets of Langerhans.  Diabetes. 1980;  29 767-773
  • 19 Goodge K A, Hutton J C. Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell.  Semin Cell Dev Biol. 2000;  11 235-242
  • 20 Huang X F, Arvan P. Intracellular transport of proinsulin in pancreatic beta-cells. Structural maturation probed by disulfide accessibility.  J Biol Chem. 1995;  270 20 417-20 423
  • 21 Ghafghazi T, McDaniel M L, Lacy P E. Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans.  Diabetes. 1981;  30 341-345
  • 22 Søndergaard L G, Stoltenberg M, Flyvbjerg A, Brock B, Schmitz O, Danscher G, Rungby J. Zinc ions in β-cells of obese, insulin-resistant, and type 2 diabetic rats traced by autometallography.  APMIS. 2003;  12 1147-1154
  • 23 Palmiter R D, Findley S D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc.  EMBO J. 1995;  14 639-649
  • 24 Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman W F. Distribution of the Zinc Transporter ZnT-1 in Comparison With Chelatable Zinc in the Mouse Brain.  J Comp Neurol. 2002;  447 201-209
  • 25 Wang Z, Danscher G, Kim Y K, Dalstrom A, Mook J S. Inhibitory zinc-enriched terminals in the mouse cerebellum: double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase.  Neurosci Lett. 2002;  321 37-40
  • 26 Maske H. Interaction between insulin and zinc in the islets of Langerhans.  Diabetes. 1957;  6 335-341
  • 27 Zalewski P D, Millard S H, Forbes I J, Kapaniris O, Slavotinek A, Betts W H, Ward A D, Lincoln S F, Mahadevan I. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc.  J Histochem Cytochem. 1994;  42 877-884
  • 28 Kristiansen L H, Rungby J, Søndergaard L G, Stoltenberg M, Danscher G. Autometallography allows ultrastructural monitoring of zinc in the endocrine pancreas.  Histochem Cell Biol. 2001;  115 125-129
  • 29 Danscher G, Howell G, Pérez-Clausell J, Hertel N. The dithizone, Timm's sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. A proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone.  Histochemistry. 1985;  83 419-422

Liselotte G. Søndergaard

Institute of Anatomy, University of Aarhus

8000 Aarhus C · Denmark ·

Phone: +45(8942)3027

Fax: +45(8942)3060

Email: lgs@neuro.au.dk

    >