Horm Metab Res 2005; 37(8): 516-520
DOI: 10.1055/s-2005-870321
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Moderate Glucose Deprivation Preconditions Myocardium Against Infarction

D.  Ebel1 , S.  Redler2 , B.  Preckel1 , W.  Schlack1 , V.  Thämer2
  • 1 Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf, Germany
  • 2 Institut für Physiologie, Heinrich-Heine-Universität Düsseldorf, Germany
Further Information

Publication History

Received 16 September 2004

Accepted after revision 24 February 2005

Publication Date:
01 September 2005 (online)

Abstract

Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mKATP) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 μmol/l of the mKATP channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 ± 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 ± 16 mm Hg under baseline conditions, and poorly recovered to 8 ± 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 ± 10 % (control) to 23 ± 12 % (p = 0.02) and 26 ± 8 % (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 ± 9 %, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 ± 9 %; 38 ± 13 %; 37 ± 8 %; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mKATP channels.

References

  • 1 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;  74 1124-1136
  • 2 Müllenheim J, Ebel D, Fräßdorf J, Preckel B, Thämer V, Schlack W. Isoflurane preconditions myocardium against infarction via release of free radicals.  Anesthesiology. 2002;  96 934-940
  • 3 Gross G J, Fryer R M. Mitochondrial KATP channels: triggers or distal effectors of ischemic or pharmacological preconditioning?.  Circ Res. 2000;  87 431-433
  • 4 Ferdinandy P, Szilvassy Z, Koltai M, Dux L. Ventricular overdrive pacing-induced preconditioning and no-flow ischemia induced preconditioning in isolated working rat hearts.  J Cardiovasc Pharmacol. 1995;  25 97-104
  • 5 Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M. Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat.  Circulation. 1998;  98 1414-1421
  • 6 Armstrong S, Downey J M, Ganote C E. Preconditioning of isolated rabbit cardiomyocytes: induction by metabolic stress and blockade by the adenosine antagonist SPT and calphostin C, a protein kinase C inhibitor.  Cardiovasc Res. 1994;  28 72-77
  • 7 Armstrong S, Ganote C E. Preconditioning of isolated rabbit cardiomyocytes: effects of glycolytic blockade, phorbol esters, and ischemia.  Cardiovasc Res. 1994;  28 1700-1706
  • 8 Armstrong S, Ganote C E. Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A3 receptor involvement.  Cardiovasc Res. 1994;  28 1049-1056
  • 9 Awan M M, Makaula S, Forresti S, Sack M N, Opie L H. Mechanisms whereby glucose deprivation triggers metabolic preconditioning in the isolated rat heart.  Mol Cell Biochem. 2000;  211 111-121
  • 10 Schlack W, Preckel B, Stunneck D, Thämer V. Effects of halothane, enflurane, isoflurane, sevoflurane, and desflurane on myocardial reperfusion injury in the isolated rat heart.  Br J Anaesth. 1998;  81 913-919
  • 11 Fath-Ordoubadi F, Beatt K J. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction - An overview of randomized placebo-controlled trials.  Circulation. 1997;  96 1152-1156
  • 12 Bellodi G, Manicardi V, Malavasi V, Veneri L, Bernini G, Bossini P, Distefano S, Magnanini G, Muratori L, Rossi G, Zuarini A. Hyperglycemia and prognosis of acute myocardial infarction in patients without diabetes mellitus.  Am J Cardiol. 1989;  64 885-888
  • 13 Jelesoff N E, Feinglos M, Granger C B, Califf R M. Outcomes of diabetic patients following acute myocardial infarction: a review of the major thrombolytic trials.  Coron Artery Dis. 1996;  7 732-743
  • 14 Kuusisto J, Mykkanen J, Pyorala K, Laakso M. NIDDM and its metabolic control predict coronary heart disease in elderly subjects.  Diabetes. 1994;  43 960-967
  • 15 Malmberg K, Ryden L, Hamsten A, Herlitz J, Waldenström A, Wedel H. Mortality prediction in diabetic patients with myocardial infarction: experience from the DIGAMI study.  Cardiovasc Res. 1997;  34 248-253
  • 16 Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction.  J Am Coll Cardiol. 2001;  38 1007-1011
  • 17 Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Umemura T, Nakamura S, Yoshida M. Effect of acute hyperglycemia on the ischemic preconditioning effect of prodromal angina pectoris in patients with a first anterior wall acute myocardial infarction.  J Am Coll Cardiol. 2003;  92 288-291
  • 18 Ebel D, Müllenheim J, Fräßdorf J, Heinen A, Huhn R, Bohlen T, Ferrari J, Südkamp H, Preckel B, Schlack W, Thämer V. Effect of acute hyperglycemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischemic late preconditioning in the rabbit heart in vivo.  Pflügers Arch Eur J Physiol. 2003;  446 175-182
  • 19 Kersten J R, Schmeling T J, Orth K G, Pagel P S, Warltier D C. Acute hyperglycemia abolishes ischemic preconditioning in vivo.  Am J Physiol. 1998;  275 H721-H725
  • 20 Gross G J, Peart J N. KATP channels and myocardial preconditioning: an update.  Am J Physiol. 2003;  285 H921-H930
  • 21 Loss E S, Jacobsen M, Costa Z SM, Jacobus A P, Borelli F, Wassermann G F. Testosterone modulates K+ATP channels in sertoli cell membrane via the PLC-PIP2 pathway.  Horm Metab Res. 2004;  36 519-525
  • 22 Gross G J, Peart J N. KATP channels and myocardial preconditioning: an update.  Am J Physiol. 2003;  285 H921-H930
  • 23 Goto M, Tsuchida A, Liu Y, Cohen M V, Downey J M. Transient inhibition of glucose uptake mimics ischemic preconditioning by salvaging ischemic myocardium in the rabbit heart.  J Mol Cell Cardiol. 1995;  27 1883-1894
  • 24 King L M, Opie L H. Does preconditioning act by glycogen depletion in the isolated rat heart?.  J Mol Cell Cardiol. 1996;  28 2305-2321
  • 25 Gross E R, LaDisa J F Jr, Weihrauch D, Olson L E, Kress T T, Hettrick D A, Pagel P S, Warltier D C, Kersten J R. Reactive oxygen species modulate coronary wall shear stress and endothelial function during hyperglycemia.  Am J Physiol. 2003;  284 H1552-H1559
  • 26 Kehl F, Krolikowski J G, Weihrauch D, Pagel P S, Warltier D C, Kersten J R. N-Acetylcysteine restores isoflurane-induced preconditioning against myocardial infarction during hyperglycemia.  Anesthesiology. 2003;  98 1384-1390
  • 27 Pain T, Yang X M, Critz S D, Yue Y, Nakano A, Liu G S, Heusch G, Cohen M V, Downey J M. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals.  Circ Res. 2000;  87 460-466
  • 28 Lebuffe G, Schumacker P T, Shao Z H, Anderson T, Iwase H, Van den Hoek T L. ROS and NO trigger early preconditioning relationship to mitochondrial KATPchannel.  Am J Physiol. 2002;  284 H299-H308
  • 29 Kersten J R, Montgomery M W, Ghassemi T, Gross E R, Toller W G, Pagel P S, Warltier D C. Diabetes and hyperglycemia impair activation of mitochondrial KATP channels.  Am J Physiol. 2001;  280 H1744-H1750
  • 30 Kersten J R, Toller W G, Gross E R, Pagel P S, Warltier D C. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality.  Am J Physiol. 2000;  278 H1218-H1224
  • 31 Cross H R, Opie L H, Radda G K, Clarke K. Is a high glycogen content beneficial or detrimental to the ischemic rat heart? A controversy resolved.  Circ Res. 1996;  78 482-491

Dr. Dirk Ebel

Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf

Postfach 10 10 07 · 40001 Düsseldorf · Germany

Phone: +49 (211) 81 18101 ·

Fax: +49 (211) 81 16253

Email: ebeld@uni-duesseldorf.de

    >