Exp Clin Endocrinol Diabetes 2006; 114(3): 111-117
DOI: 10.1055/s-2005-872841
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Three Novel Point Mutations of the CYP21 Gene Detected in Classical Forms of Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency

N. Krone1 , F. G. Riepe1 , C.-J. Partsch1 , W. Vorhoff2 , J. Brämswig3 , W. G. Sippell1
  • 1Division of Paediatric Endocrinology, Department of Paediatrics, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein (Campus Kiel), Kiel, Germany
  • 2Practising Paediatrician, Düsseldorf, Germany
  • 3Department of Paediatrics, Westfälische Wilhelms-Universität Münster, Münster, Germany
Further Information

Publication History

Received: September 16, 2004 First decision: May 13, 2005

Accepted: August 22, 2005

Publication Date:
25 April 2006 (online)

Abstract

Congenital adrenal hyperplasia (CAH) [OMIM 201 910] is a group of autosomal recessive disorders most commonly due to 21-hydroxylase deficiency and presenting with a wide range of clinical manifestations. A limited number of inactivating pseudogene-derived mutations account for the majority of 21-hydroxylase gene (CYP21) mutations, additional rare mutations can be found in single families and small populations. We found three novel CYP21 mutations in CAH patients suffering from the classical form of the disease, of which one is a frameshift mutation (1353 - 1354insA) leading to a premature termination codon (K277K, Q228A…E294X), one results in a premature stop codon (2551C > T, R444X), and one is a missense mutation (2609T>C; P463L). The frameshift and premature stop mutations can be predicted to result in a CYP21 protein without any residual enzyme activity. To determine the functional consequences of the P463L mutation, the in vitro enzyme activity was studied in COS-7 cells and revealed a reduced 21-hydroxylase activity of 2.6 ± 0.8 (SD)% for the conversion of 17-hydroxyprogesterone (17OHP) to 11-deoxycortisol and of 3.0 ± 0.5 % for the conversion of progesterone to 11-deoxycorticosterone (DOC). We conclude that functional analyses of unknown mutations provide information on the disease severity and should be always performed when novel CYP21 mutations are detected. Knowledge of the residual 21-hydroxylase function improves both genetic counselling and individual clinical management in CAH patients.

References

  • 1 Antonarakis S E. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group.  Hum Mutat. 1998;  11 1-3
  • 2 Barbaro M, Lajic S, Baldazzi L, Balsamo A, Pirazzoli P, Cicognani A, Wedell A, Cacciari E. Functional analysis of two recurrent amino acid substitutions in the CYP21 gene from Italian patients with congenital adrenal hyperplasia.  J Clin Endocrinol Metab. 2004;  89 2402-2407
  • 3 Baumgartner-Parzer S M, Schulze E, Waldhausl W, Pauschenwein S, Rondot S, Nowotny P, Meyer K, Frisch H, Waldhauser F, Vierhapper H. Mutational spectrum of the steroid 21-hydroxylase gene in Austria: identification of a novel missense mutation.  J Clin Endocrinol Metab. 2001;  86 4771-4775
  • 4 Carroll M C, Campbell R D, Porter R R. Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man.  Proc Natl Acad Sci USA. 1985;  82 521-525
  • 5 Clayton P E, Miller W L, Oberfield S E, Ritzen E M, Sippell W G, Speiser P W. Consensus statement on 21-hydroxylase deficiency from the European Society for Paediatric Endocrinology and the Lawson Wilkins Pediatric Endocrine Society.  Horm Res. 2002;  58 188-195
  • 6 Ezquieta B, Oliver A, Gracia R, Gancedo P G. Analysis of steroid 21-hydroxylase gene mutations in the Spanish population.  Hum Genet. 1995;  96 198-204
  • 7 Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene.  Proc Natl Acad Sci USA. 1986;  83 2841-2845
  • 8 Jaaskelainen J, Levo A, Voutilainen R, Partanen J. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population.  J Clin Endocrinol Metab. 1997;  82 3293-3297
  • 9 Joint LWPES/ESPE CAH Working Group . Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology.  J Clin Endocrinol Metab. 2002;  87 4048-4053
  • 10 Kharrat M, Tardy V, M′Rad R, Maazoul F, Jemaa L B, Refai M, Morel Y, Chaabouni H. Molecular genetic analysis of Tunisian patients with a classic form of 21-hydroxylase deficiency: Identification of four novel mutations and high prevalence of Q318X mutation.  J Clin Endocrinol Metab. 2004;  89 368-374
  • 11 Krone N, Braun A, Roscher A A, Knorr D, Schwarz H P. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany.  J Clin Endocrinol Metab. 2000;  85 1059-1065
  • 12 Krone N, Braun A, Weinert S, Peter M, Roscher A A, Partsch C J, Sippell W G. Multiplex minisequencing of the 21-hydroxylase gene as a rapid strategy to confirm congenital adrenal hyperplasia.  Clin Chem. 2002;  48 818-825
  • 13 Krone N, Roscher A A, Schwarz H P, Braun A. Comprehensive analytical strategy for mutation screening in 21-hydroxylase deficiency.  Clin Chem. 1998;  44 2075-2082
  • 14 Melet A, Assrir N, Jean P, Pilar Lopez-Garcia M, Marques-Soares C, Jaouen M, Dansette P M, Sari M A, Mansuy D. Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid.  Arch Biochem Biophys. 2003;  409 80-91
  • 15 Mornet E, Gibrat J F. A 3D model of human P450c21: study of the putative effects of steroid 21-hydroxylase gene mutations.  Hum Genet. 2000;  106 330-339
  • 16 Nikoshkov A, Falorni A, Lajic S, Laureti S, Wedell A, Lernmark A, Luthman H. A Conformation-dependent epitope in Addison's disease and other endocrinological autoimmune diseases maps to a carboxyl-terminal functional domain of human steroid 21-hydroxylase.  J Immunol. 1999;  162 2422-2426
  • 17 Nikoshkov A, Lajic S, Holst M, Wedell A, Luthman H. Synergistic effect of partially inactivating mutations in steroid 21-hydroxylase deficiency.  J Clin Endocrinol Metab. 1997;  82 194-199
  • 18 Nikoshkov A, Lajic S, Vlamis-Gardikas A, Tranebjaerg L, Holst M, Wedell A, Luthman H. Naturally occurring mutants of human steroid 21-hydroxylase (P450c21) pinpoint residues important for enzyme activity and stability.  J Biol Chem. 1998;  273 6163-6165
  • 19 Peter M, Sippell W G, Lorenzen F, Willig R P, Westphal E, Grosse-Wilde H. Improved test to identify heterozygotes for congenital adrenal hyperplasia without index case examination.  Lancet. 1990;  335 1296-1299
  • 20 Schoch G A, Yano J K, Wester M R, Griffin K J, Stout C D, Johnson E F, Marques-Soares C, Dansette P M, Mansuy D. Structure of human microsomal cytochrome P450 2C8: Evidence for a peripheral fatty acid binding site.  J Biol Chem. 2004;  279 9497-9503
  • 21 Speiser P W, Dupont B, Rubinstein P, Piazza A, Kastelan A, New M I. High frequency of nonclassical steroid 21-hydroxylase deficiency.  Am J Hum Genet. 1985;  37 650-667
  • 22 Speiser P W, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tusie-Luna M T, Lesser M, New M I, White P C. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency.  J Clin Invest. 1992;  90 584-595
  • 23 Speiser P W, New M I, Tannin G M, Pickering D, Yang S Y, White P C. Genotype of Yupik Eskimos with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.  Hum Genet. 1992;  88 647-648
  • 24 Speiser P W, White P C. Congenital adrenal hyperplasia.  N Engl J Med. 2003;  349 776-788
  • 25 Stikkelbroeck N M, Hoefsloot L H, de Wijs I J, Otten B J, Hermus A R, Sistermans E A. CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations.  J Clin Endocrinol Metab. 2003;  88 3852-3859
  • 26 Tusie-Luna M T, Traktman P, White P C. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus.  J Biol Chem. 1990;  265 20916-20922
  • 27 Wedell A, Thilen A, Ritzen E M, Stengler B, Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation.  J Clin Endocrinol Metab. 1994;  78 1145-1152
  • 28 Wester M R, Johnson E F, Marques-Soares C, Dansette P M, Mansuy D, Stout C D. Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 A resolution: evidence for multiple substrate binding modes.  Biochemistry. 2003;  42 6370-6379
  • 29 White P C, Grossberger D, Onufer B J, Chaplin D D, New M I, Dupont B, Strominger J L. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man.  Proc Natl Acad Sci U S A. 1985;  82 1089-1093
  • 30 White P C, New M I, Dupont B. Structure of human steroid 21-hydroxylase genes.  Proc Natl Acad Sci USA. 1986;  83 5111-5115
  • 31 White P C, Speiser P W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency.  Endocr Rev. 2000;  21 245-291
  • 32 Wilson R C, Mercado A B, Cheng K C, New M I. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype.  J Clin Endocrinol Metab. 1995;  80 2322-2329

Dr. Nils Krone

Division of Paediatric Endocrinology
Department of Paediatrics
Christian-Albrechts-Universität zu Kiel
Universitätskinderklinik

Schwanenweg 20

24105 Kiel

Germany

Phone: + 494315971797

Fax: + 49 43 15 97 18 31

Email: krone@pediatrics.uni-kiel.de

    >