Plant Biol (Stuttg) 2006; 8(1): 103-111
DOI: 10.1055/s-2005-872890
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Costs of Reproduction as Related to the Timing of Phenological Phases in the Dioecious Shrub Pistacia lentiscus L.

R. Milla1 , P. Castro-Díez2 , M. Maestro-Martínez1 , G. Montserrat-Martí1
  • 1Instituto Pirenaico de Ecología (C.S.I.C.), P.O. Box 202, 50080 Zaragoza, Spain
  • 2Departamento de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
Further Information

Publication History

Received: April 14, 2005

Accepted: August 30, 2005

Publication Date:
08 November 2005 (online)

Abstract

Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.

References

  • 1 Ågren J.. Sexual differences in biomass and nutrient allocation in the dioecious Rubus chamaemorus.  Ecology. (1988);  69 962-973
  • 2 Alados C. L., Navarro T., Cabezudo B., Emlen J. M., Freeman D. C.. Developmental instability in gynodioecicus Teucrium lusitanicum.  Evolutionary Ecology. (1998);  12 21-34
  • 3 Alados C. L., Giner M. L., Dehesa L., Escos J., Barroso F. G., Emlen J. M., Freeman D. C.. Developmental instability and fitness in Periploca laevigata experiencing grazing disturbance.  International Journal of Plant Sciences. (2002);  163 969-978
  • 4 Allen S. E., Grimsbanm H. M., Parkinson J. A., Quarmby C., Roberts J. D.. Chemical analysis. Chapman, S. B., ed. Methods in Plant Ecology. Oxford; Blackwell Academic Press (1976): 411-466
  • 5 Baker G. A., Rundel P. W., Parsons D. J.. Comparative phenology and growth in three chaparral shrubs.  Botanical Gazette. (1982);  143 94-100
  • 6 Bañuelos M. J., Obeso J. R.. Resource allocation in the dioecious shrub Rhamnus alpinus: the hidden costs of reproduction.  Evolutionary Ecology Research. (2004);  6 1-17
  • 7 Barrett S. C. H., Helenurm K.. Floral sex ratios and life history in Aralia nudicaulis (Araliaceae).  Evolution. (1981);  35 752-762
  • 8 Blanco A., Pequerul A., Val J., Monge E., Gómez-Aparisi J.. Crop-load effects on vegetative growth, mineral nutrient concentration and leaf water potencial in Catherine peach.  Journal of Horticultural Sciences. (1995);  70 623-629
  • 9 Chapin F. S., Schulze E.-D., Mooney H. A.. The ecology and economics of storage in plants.  Annual Review of Ecology and Systematics. (1990);  21 423-447
  • 10 Cody M. L.. A general theory of clutch size.  Evolution. (1966);  20 174-184
  • 11 Correira O., Díaz-Barradas M. C.. Ecophysiological differences between male and female plants of Pistacia lentiscus L.  Plant Ecology. (2000);  149 131-142
  • 12 Cremer K. W.. Relations between reproductive growth and vegetative growth of Pinus radiata.  Forest, Ecology and Management. (1992);  52 179-199
  • 13 Dawson T. E., Ehleringer J. R.. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo.  Ecology. (1993);  74 798-815
  • 14 De Lillis M., Fontanella A.. Comparative phenology and growth in different species of the Mediterranean maquis of central Italy.  Vegetatio. (1992);  99-100 83-96
  • 15 Delph L. F.. Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpina.  Ecology. (1990);  71 1342-1351
  • 16 Delph L. F.. Sexual dimorphism in life history. Geber, M. A., Dawson, T. E., and Delph, L. F., eds. Gender and Sexual Dimorphism in Flowering Plants. Berlin; Springer-Verlag (1999): 149-173
  • 17 Delph L. F., Lu Y., Jayne L.. Patterns of resource allocation in a dioecious Carex (Cyperaceae).  American Journal of Botany. (1993);  80 607-615
  • 18 Delph L. F., Meagher T. R.. Sexual dimorphism masks life history trade-offs in the dioecious plant Silene latifolia.  Ecology. (1995);  76 775-785
  • 19 Díaz-Barradas M. C., Correia O.. Sexual dimorphism, sex ratio and spatial distribution of male and female shrubs in the dioecious species Pistacia lentiscus L.  Folia Geobotanica. (1999);  34 163-174
  • 20 Freeman D. C., Klikoff L. G., Harper K. T.. Differential resource utilization by the sexes of dioecious plants.  Science. (1976);  193 597-599
  • 21 Freeman D. C., Graham J. H., Emlen J. M., Tracy M., Hough R. A., Alados C. L., Escós J.. Plant developmental instability: new measures, applications, and regulations. Polack, M., ed. Developmental Instability. Causes and Consequences. New York; Oxford University Press (2003): 367-386
  • 22 Gadgil M., Bossert W. H.. Life historical consequences of natural selection.  American Naturalist. (1970);  104 1-24
  • 23 Gehring J. L., Scoby J., Parsons M., Delph L. F.. Whole-plant investment in nectar is greater for males than pollinated females in the dioecious plant Silene latifolia.  Evolutionary Ecology Research. (2004);  6 1237-1252
  • 24 Grundwag M.. Embriology and fruit development in four species of Pistacia L. (Anacardiaceae).  Botanical Journal of the Linnean Society. (1976);  73 355-370
  • 25 Hair J. F., Anderson R. E., Tatham R. L.. Multivariate Data Analysis. London; Prentice Hall (1998): 768
  • 26 Harper J. L.. Population Biology of Plants. Oxford; Oxford Academic Press (1977): 892
  • 27 Hoffmann A. J.. Seasonal growth rhythms in Peumus boldus, a dioecious tree of the Chilean mediterranean vegetation.  Acta Oecologica, Oecologia Plantarum. (1981);  2 31-39
  • 28 Hoffmann A. J., Alliende M. C.. Interactions in the patterns of vegetative growth and reproduction in woody dioecious plants.  Oecologia. (1984);  61 109-114
  • 29 Hossaert-McKey M., Jarry M.. Spatial and temporal patterns of investment in growth and sexual reproduction in two stoloniferous species, Lathyrus latifolius and L. sylvestris.  Journal of Ecology. (1992);  80 555-565
  • 30 Jonasson S., Medrano H., Flexas J.. Variation in leaf longevity of Pistacia lentiscus and its relationship to sex and drought stress inferred from leaf d13C.  Functional Ecology. (1997);  11 282-289
  • 31 Jordano P.. Polinización y variabilidad de la producción de semillas en Pistacia lentiscus L. (Anacardiaceae).  Anales del Jardín Botánico de Madrid. (1988);  45 213-231
  • 32 Klinkhamer P. G. L., de Jong T. J.. Size-dependent allocation to male and female reproduction. Bazzaz, F. A. and Grace, J., eds. Plant Resource Allocation. New York; Academic Press (1997): 211-229
  • 33 Lehtilä K., Syrjänen K.. Positive effects of pollination on subsequent size, reproduction, and survival of Primula veris.  Ecology. (1995);  76 1084-1098
  • 34 Lloyd D. G., Webb C. J.. Secondary sex characters in plants.  Botanical Review. (1977);  43 177-216
  • 35 Martínez-Pallé E., Aronne G.. Reproductive cycle of Pistacia lentiscus (Anacardiaceae) in Southern Italy.  Plant Biosystems. (2000);  134 365-371
  • 36 Meagher T. R., Delph L. F.. Individual flower demography, floral phenology and floral display size in Silene latifolia.  Evolutionary Ecology Research. (2001);  3 845-860
  • 37 Milla R., Castro-Díez P., Maestro-Martínez M., Montserrat-Martí G.. Relationships between phenology and the remobilization of nitrogen, phosphorus, and potassium in branches of eight Mediterranean evergreens.  New Phytologist. (2005);  168 167-178
  • 38 Milla R., Maestro-Martínez M., Montserrat-Martí G.. Seasonal branch nutrient dynamics in two Mediterranean woody shrubs with contrasted phenology.  Annals of Botany. (2004);  93 671-680
  • 39 Montserrat-Martí G., Pérez-Rontomé C.. Fruit growth dynamics and their effects on the phenological pattern of native Pistacia populations in NE Spain.  Flora. (2002);  197 161-174
  • 40 Nicotra A. B.. Reproductive allocation and the long-term costs of reproduction in Sipanura grandiflora, a dioecious neotropical shrub.  Journal of Ecology. (1999);  87 138-149
  • 41 Nicotra A. B., Chazdon R. L., Montgomery R. A.. Sexes show contrasting patterns of leaf and crown carbon gain in a dioecious rainforest shrub.  American Journal of Botany. (2003);  90 347-355
  • 42 Niklas K. J.. The allometry of plant reproductive biomass and stem diameter.  American Journal of Botany. (1993);  80 461-467
  • 43 Niklas K. J., Enquist B. J.. An allometric model for seed plant reproduction.  Evolutionary Ecology Research. (2003);  5 79-88
  • 44 Obeso J. R.. The costs of reproduction in plants.  New Phytologist. (2002);  155 321-348
  • 45 Obeso J. R.. A hierarchical perspective in allocation to reproduction from whole plant to fruit and seed level.  Perspectives in Plant Ecology, Evolution and Systematics. (2004);  6 217-225
  • 46 Orshan G.. Plant Pheno-Morphological Studies in Mediterranean Type Ecosystems. Dordrecht; Kluwer Academic Publishing (1989): 404
  • 47 Samson D. A., Werk K. S.. Size-dependent effects in the analysis of reproductive effort in plants.  American Naturalist. (1986);  127 667-680
  • 48 Ueno N., Seiwa K.. Gender-specific shoot structure and functions in relation to habitat conditions in a dioecious tree, Salix sachalinensis.  Journal of Forest Research. (2003);  8 9-16
  • 49 Verdú M., Garcia-Fayos P.. Ecological causes, function, and evolution of abortion and parthenocarpy in Pistacia lentiscus (Anacardiaceae).  Canadian Journal of Botany. (1998);  76 134-141
  • 50 Wallace C. S., Rundel P. W.. Sexual dimorphism and resource allocation in male and female shrubs of Simmondsia chinensis.  Oecologia. (1979);  44 34-39
  • 51 Wardlaw I. F.. The control of carbon partitioning in plants.  New Phytologist. (1990);  116 341-381
  • 52 Wright I. J., Reich P. B., Westoby M., Ackerly D. D., Baruch Z., Bongers F., Cavender-Bares J., Chapin F. S., Cornelissen J. H. C., Diemer M., Flexas J., Garnier E., Groom P. K., Gulias J., Hikosaka K., Lamont B. B., Lee T., Lee W., Lusk C., Midgley J. J., Navas M.-L., Niinemets Ü., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V. I., Roumet C., Thomas S. C., Tjoelker M. G., Veneklaas E., Villar R.. The world-wide leaf economics spectrum.  Nature. (2004);  428 821-827

R. Milla

Instituto Pirenaico de Ecología (C.S.I.C.)

P.O. Box 202

50080 Zaragoza

Spain

Email: rmilla@ipe.csic.es

Email: milla052@umn.edu

Editor: F. R. Scarano