Abstract
Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown
under high nitrogen (N) supply was observed in previous studies, along with increasing
scab susceptibility of cultivar “Golden Delicious” after high N nutrition. Several
hypotheses have suggested that there is a trade-off between primary and secondary
metabolism because of competition for common substrates, but nothing is known about
regulation at the enzyme level. In this study, a set of experiments was performed
to elucidate the effect of N nutrition on the activities of key enzymes involved in
flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone
isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol
4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The
inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the
influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not
evident. However, PAL activity seems to be downregulated, thus forming a bottleneck
resulting in a generally decreased flavonoid accumulation. Furthermore, the response
of the scab-resistant cultivar “Rewena” to high N nutrition was not as strong as that
of the susceptible cultivar “Golden Delicious”.
Key words
Phenylalanine ammonia-lyase (PAL) - chalcone synthase/chalcone isomerase (CHS/CHI)
- flavanone 3-hydroxylase (FHT) - flavonol synthase (FLS) - dihydroflavonol 4-reductase
(DFR) - nitrogen nutrition - apple leaf - hydroxycinnamic acids - dihydrochalcones
- flavonols - flavanols
References
- 1
Balsberg Pahlsson A.-M..
Influence of nitrogen fertilization on minerals, carbohydrates, amino acids and phenolic
compounds in beech (Fagus sylvatica L.) leaves.
Tree Physiology.
(1992);
10
93-100
- 2
Bongue-Bartelsman M., Phillips D. A..
Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic
pathway of tomato.
Plant Physiology and Biochemistry.
(1995);
33
539-546
- 3
da Cunha A..
The estimation of L-phenylalanine ammonia-lyase shows phenylpropanoid biosynthesis
to be regulated by L-phenylalanine supply and availability.
Phytochemistry.
(1987);
26
2723-2727
- 4
Hakulinen J. R..
Nitrogen-induced reduction in leaf phenolic level is not accomanied by increased rust
frequency in a compatible willow (Salix myrsinifolia)-Melampsora rust interaction.
Physiologia Plantarum.
(1998);
102
101-110
- 5
Hakulinen J. R., Julkunen-Tiitto R., Tahvanainen J..
Does nitrogen fertilization have an impact on the trade-off between willow growth
and defensive secondary metabolism?.
Trees.
(1995);
9
235-240
- 6
Halbwirth H., Kampan W., Stich K., Fischer T. C., Meisel B., Forkmann G., Rademacher W..
Biochemical and molecular biological investigations with respect to induction of fire
blight resistance in apple and pear by transiently altering the flavonoid metabolism
with specific enzyme inhibitors.
Acta Hortitculturae.
(2002);
590
485-492
- 7
Herms D. A., Mattson W. J..
The dilemma of plants: to grow and defend.
The Quarterly Review of Biology.
(1992);
67
283-335
- 8
Jones C. G., Hartley S. E..
A protein competition model of phenolic allocation.
OIKOS.
(1999);
86
27-44
- 9
Kainulainen P., Holopainen J. K., Holopainen T..
Combined effects of ozone and nitrogen on secondary compounds, amino acids, and aphid
performance in Scots pine.
Journal of Environmental Quality.
(2000);
29
334-342
- 10
Keinänen M., Julkunen-Tiitto R..
High-performance liquid chromatographic determination of flavonoids in Betula pendula and Betula pubescens leaves.
Journal of Chromatography A.
(1998);
793
370-377
- 11
Keski-Saari S., Julkunen-Tiitto R..
Resource allocation in different parts of juvenile mountain birch plants: effect of
nitrogen supply on seedling phenolics and growth.
Physiologia Plantarum.
(2003);
118
114-126
- 12
Lavola A., Aphalo P. J., Lahti M., Julkunen-Tiitto R..
Nutrient availability and the effect of increasing UV‐B radiation on secondary plant
compounds in Scots pine.
Environmental and Experimental Botany.
(2003);
49
49-60
- 13
Lavola A., Julkunen-Tiitto R..
The effect of elevated carbon dioxide and fertilization on the primary and secondary
metabolites in birch, Betula pendula (Roth).
Oecologia.
(1994);
99
315-321
- 14
Leser C., Treutter D..
Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen
(scab) resistance of apple trees.
Physiologia Plantarum.
(2005);
123
49-56
- 15
Loomis W. E..
Growth-differentiation balance vs. carbonhydrate-nitrogen ratio.
Proceedings of the American Society for Horticultural Science.
(1932);
29
240-245
- 16
Manibhushanrao K., Manian S..
Changes in the phenol metabolism of rice cultivars with reference to nitrogen fertilization
and sheath blight disease.
Acta Phytopathologica et Entomologica Hungarica.
(1995);
30
191-203
- 17
Margna U..
Control at the level of substrate supply - an alternative in the regulation of phenylpropanoid
accumulation in plant cells.
Phytochemistry.
(1977);
16
419-426
- 18
Matyssek R., Schnyder H., Elstner E. F., Munch J. C., Pretzsch H., Sandermann H..
Growth and parasite defence in plants; the balance between resource sequestration
and retention: in lieu of a guest editorial.
Plant Biology.
(2002);
4
133-136
- 19
Mayr U., Treutter D., Santos-Buelga C., Bauer H., Feucht W..
Developmental changes in the phenolic concentrations of “Golden Delicious” apple fruits
and leaves.
Phytochemistry.
(1995);
38
1151-1155
- 20
Mayr U., Michalek S., Treutter D., Feucht W..
Phenolic compounds of apple and their relationship to scab resistance.
Journal of Phytopathology.
(1997);
145
69-75
- 21
Muzika R. M., Pregitzer K. S..
Effect of nitrogen fertilization on leaf phenolic production of grand fir seedlings.
Trees.
(1992);
6
241-244
- 22
Picinelli A., Dapena E., Mangas J. J..
Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary
study.
Journal of Agricultural and Food Chemistry.
(1997);
43
2273-2278
- 23
Roemmelt S., Zimmermann N., Rademacher W., Treutter D..
Formation of novel flavonoids in apple (Malus × domestica) treated with the 2-oxoglutarate-dependent dioxygenase inhibitor prohexadione-Ca.
Phytochemistry.
(2003);
64
709-716
- 24
Rühmann S., Leser C., Bannert M., Treutter D..
Relationship between growth, secondary metabolism, and resistance of apple.
Plant Biology.
(2002);
4
137-143
- 25
Rühmann S., Treutter D..
Effect of N-nutrition in apple on the response of its secondary metabolism to prohexadione-Ca
treatment.
European Journal of Horticultural Science.
(2003);
68
152-159
- 26
Sandermann H., Strominger L..
Purification and properties of C55-isoprenoid alcohol phosphokinase from Staphylococcus aureus.
.
Journal of Biological Chemistry.
(1972);
247
5123-5131
- 27
Stewart A. J., Chapman W., Jenkins G. I., Graham I., Martin T., Crozier A..
The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant
tissues.
Plant, Cell and Environment.
(2001);
24
1189-1197
- 28
Tan S. C..
Phenylalanine ammonia-lyase and the phenylalanine ammonia-lyase inactivating system:
effects of light, temperature and mineral deficiencies.
Australian Journal of Plant Physiology.
(1980);
7
159-167
- 29
Treutter D..
Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde.
Journal of Chromatography.
(1989);
467
185-193
- 30
Treutter D., Santos-Buelga C., Gutmann M., Kolodziej H..
Identification of flavan-3-ols and procyanidins by HPLC and chemical reaction detection.
Journal of Chromatography A.
(1994);
667
290-297
D. Treutter
FG Obstbau
Technische Universität München
Alte Akademie 16
85350 Freising
Germany
Email: dieter.treutter@wzw.tum.de
Guest Editor: R. Matyssek