Int J Sports Med 2006; 27(12): 993-999
DOI: 10.1055/s-2006-923835
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Scaling Submaximal Exercise Cardiac Output and Stroke Volume: The HERITAGE Family Study

K. R. Turley1 , P. R. Stanforth2 , T. Rankinen3 , C. Bouchard3 , A. S. Leon4 , D. C. Rao5 , J. S. Skinner6 , J. H. Wilmore2 with the technical assistance of F. M. Spears1
  • 1Department of Kinesiology, Harding University, Searcy, AR, USA
  • 2Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
  • 3Pennington Biomedical Research Center, Baton Rouge, LA, USA
  • 4School of Kinesiology and Leisure Studies, University of Minnesota, Minneapolis, MN, USA
  • 5Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
  • 6Department of Kinesiology, Indiana University, Bloomington, IN, USA
Further Information

Publication History

Accepted after revision: December 5, 2005

Publication Date:
30 May 2006 (online)

Abstract

This study investigated different methods of scaling submaximal cardiac output (Q) and stroke volume (SV) to best normalize for body size (body surface area [BSA], height [Ht], weight [Wt], and fat-free mass [FFM]). Q and SV were measured at both an absolute (50 W) and a relative power output (60 % of V·O2max) in 337 men and 422 women, 17 to 65 years of age. Traditional ratio scaling was examined in addition to allometric scaling, where scaling exponents (b) were determined for each body size variable (x) that best normalized the physiological outcome variables (y) for body size (y = ax b ). With ratio scaling, regardless of the body size variable (x = BSA, Ht, Wt, FFM), there was no evidence of a linear relationship between x and y (y = Q or SV). A linear relationship is a necessary condition for appropriate normalization. Further, when ratio-scaled variables (e.g., Q/BSA) were correlated to the body size variable (e.g., BSA) by which they were scaled, significant (p ≤ 0.05) relationships still existed for BSA, Ht, Wt, and FFM. Thus, ratio scaling did not meet either criteria for normalizing Q and SV for body size. In contrast, when allometrically-derived scaling exponents were used to normalize Q and SV (e.g., Q/BSA b ), the resulting scaled values were uncorrelated (i.e., size-independent) with BSA, Ht, Wt, or FFM. These results were independent of age, sex or race. In summary, ratio scaling did not appropriately normalize Q and SV for differences in body size, while allometric scaling did result in size-independent values. Thus, individually-derived allometric exponents should be applied to body size variables to most appropriately adjust Q and SV for body size.

References

  • 1 Batterham A M, George K P, Mullineaux D R. Allometric scaling of left ventricular mass by body dimensions in males and females.  Med Sci Sports Exerc. 1997;  29 181-186
  • 2 Bouchard C, Leon A S, Rao D C, Skinner J S, Wilmore J H, Gagnon J. The HERITAGE Family Study: aims, design, and measurement protocol.  Med Sci Sports Exerc. 1995;  27 721-729
  • 3 Burch G E, Giles T D. Critique of cardiac index.  Am Heart J. 1971;  82 424-425
  • 4 de Simone G, Devereux R B, Daniels S R, Mureddu G, Roman M J, Kimball T R, Greco R, Witt S, Contaldo F. Stroke volume and cardiac output in normotensive children and adults: assessment of relations with body size and impact of overweight.  Circul. 1997;  95 1837-1843
  • 5 DuBois D, DuBois E F. A formula to estimate the approximate surface area if height and weight be known.  Arch Int Med. 1916;  17 863-871
  • 6 Grollman A. Physiological variations in the cardiac output of man VI. The value of the cardiac output of the normal individual in the basal resting condition.  Am J Physiol. 1929;  90 210-217
  • 7 Rogers D M, Olson B L, Wilmore J H. Scaling for the V·O2-to-body size relationship among children and adults.  J Appl Physiol. 1995;  79 958-967
  • 8 Rowland T, Goff D, Martel L, Ferrone L, Kline G. Normalization of maximal cardiovascular variables for body size in premenarcheal girls.  Ped Cardiol. 2000;  21 429-432
  • 9 Tanner J M. The construction of normal standards for cardiac output in man.  J Clin Invest. 1949;  28 567-582
  • 10 Tanner J M. Fallacy of per-weight and per-surface area standards and their relation to spurious correlation.  J Appl Physiol. 1949;  2 1-15
  • 11 Wilmore J H, Déspres J-P, Stanforth P R, Mandel S, Rice T, Gagnon J, Leon A S, Rao D C, Skinner J S, Bouchard C. Alterations in body weight and composition consequent to 20 wk of endurance training: the HERITAGE Family Study.  Am J Clin Nutr. 1999;  70 346-352
  • 12 Wilmore J H, Farrell P A, Norton A C, Coté R W, Coyle E F, Ewy G A, Temkin L P, Billing J E. An automated, indirect assessment of cardiac output during rest and exercise.  J Appl Physiol. 1982;  52 1493-1497
  • 13 Wilmore J H, Stanforth P R, Turley K R, Gagnon J, Daw E W, Leon A S, Rao D C, Skinner J S, Bouchard C. Reproducibility of cardiovascular, respiratory and metabolic responses to submaximal exercise: the HERITAGE Family Study.  Med Sci Sports Exercise. 1998;  30 259-265

Kenneth R. Turley

Harding University

Box 12281

Searcy

AR 72149, USA

Phone: +5012794908

Fax: +50 12 79 41 38

Email: KRTurley@Harding.edu

    >