Plant Biol (Stuttg) 2006; 8(5): 698-705
DOI: 10.1055/s-2006-924150
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Chlorophyll a Fluorescence Imaging of Ozone-Stressed Brassica napus L. Plants Differing in Glucosinolate Concentrations

B. Gielen1 , K. Vandermeiren2 , N. Horemans3 , D. D'Haese3 , 4 , R. Serneels5 , R. Valcke6
  • 1Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
  • 2Veterinary and Agrochemical Research Centre, Leuvensesteenweg 13, 3080 Tervuren, Belgium
  • 3Department of Biology, Research Group of Plant Physiology, University of Antwerp, Campus Middelheim, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
  • 4School of Biology and Psychology, University of Newcastle, Devonshire Terrace - Devonshire Building, Newcastle-Upon-Tyne, NE1 7RU, UK
  • 5Department WNI, Theoretical Physics, Hasselt University, Agoralaan, Bldg D, 3590 Diepenbeek, Belgium
  • 6Centre for Environmental Siences, Dept. SBG, Laboratory of Molecular and Physical Plant Physiology, Hasselt University, Agoralaan, Bldg D, 3590 Diepenbeek, Belgium
Further Information

Publication History

Received: November 3, 2005

Accepted: March 23, 2006

Publication Date:
05 July 2006 (online)

Abstract

Brassicaceae are characterised by glucosinolates (GS), which appear to be involved not only in biotic but also in abiotic stress responses of plants. We investigated the effect of O3 stress on leaf GS concentrations in two lines of Brassica napus L., differing in GS content. Ozone fumigation decreased GS concentrations in leaves of B. napus of one line. In control conditions, chlorophyll content, rates of saturating photosynthesis, and quantum yield of photosystem 2 differed between the two Brassica lines, but differences were smaller in O3‐stress conditions, suggesting that the relationship between leaf GS concentration and sensitivity to abiotic stress merits further research. In agreement with other ecophysiological measurements, chlorophyll fluorescence imaging clearly distinguished both lines and in some cases also treatments. A method for analysis of fluorescence images accounting for the two-dimensional leaf heterogeneity is presented.

References

  • 1 Baier M., Kandlbinder A., Golldack D., Dietz K.-J.. Oxidative stress and ozone: perception, signalling and response.  Plant, Cell and Environment. (2005);  28 1012-1020
  • 2 Bolsinger M., Lier M. E., Lansky D. M., Hughes P. R.. Influence of ozone air pollution on plant-herbivore interactions. Part 1: Biochemical changes in ornamental milkweed (Asclepias currassavica L.; Asclepiadaceae).  Environmental Pollution. (1991);  72 69-83
  • 3 Brown P. D., Morra M. J.. Control of soil-born plant pests using glucisinolate-containing plants. Sparks, D. L., ed. Advances in Agronomy. San Diego; Academic Press (1997): 167-231
  • 4 Buschmann C., Langsdorf G., Lichtenthaler H. K.. Imaging of the blue, green and red fluorescence emission of plants: an overview.  Photosynthetica. (2000);  38 483-491
  • 5 Buschmann C., Lichtenthaler H. K.. Principles and characteristics of multi-colour fluorescence imaging of plants.  Journal of Plant Physiology. (1998);  152 297-314
  • 6 Chaerle L., Hagenbeek D., De Bruyne E., Valcke R., Van Der Straeten D.. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage.  Plant and Cell Physiology. (2004);  45 887-896
  • 7 Chaerle L., Valcke R., Van Der Straeten D.. Imaging techniques in plant physiology: from simple to multispectral approaches. Hemantaranjan, A., ed. Advances in Plant Physiology. Jodhpur, India; Scientific Publishers (2002): 135-155
  • 8 Chaerle L. R., Van Der Straeten D.. Seeing is believing: imaging techniques to monitor plant health.  Biochimica et Biophysica Acta. (2001);  1519 153-166
  • 9 Ciscato M., Sowinska M., vandeVen M., Heisel F., Deckers T., Bonany J., Valcke R.. Fluorescence imaging as a diagnostic tool to detect physiological disorders during storage of apples.  Acta Horticulturae. (2001);  553 507-512
  • 11 Doughty K. J., Kiddle G. A., Pye B. J., Wallsgrove R. M., Pickett J. A.. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate.  Phytochemistry. (1995);  38 347-350
  • 12 Fahey J. W., Zalcmann A. T., Talalay P.. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.  Phytochemistry. (2001);  56 5-51
  • 13 Fahey J. W., Zhang Y., Talalay P.. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 10367-10372
  • 14 Genty B., Briantais J.-M., Baker N. R.. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.  Biochimica et Biophysica Acta. (1989);  990 87-92
  • 15 Gielen B., De Boeck H. J., Lemmens C. M. H. M., Valcke R., Nijs I., Ceulemans R.. Grassland species will not necessarily benefit from future elevated air temperatures: a chlorophyll fluorescence approach to study autumn physiology.  Physiologia Plantarum. (2005);  125 52-63
  • 16 Haar A.. Zur Theorie der orthogonalen Funktionensysteme.  Mathematische Annalen. (1910);  69 331-337
  • 17 Haralick R. M., Shanmugam K., Dinstein I.. Textural features for image classification.  IEEE Transactions on Systems, Man and Cybernetics. (1973);  3 610-621
  • 18 Horng M.-H., Sun Y.-N., Lin X.-Z.. Texture feature coding method for classification of liver sonography.  Computerized Medical Imaging and Graphics. (2002);  26 33-42
  • 19 Jain R., Kasturi R., Schunck B. G.. Machine Vision. New York; McGraw-Hill, Inc. (1995): 1-549
  • 20 Jensen C. R., Mogensen V. O., Mortensen G., Fieldsend J. K., Milford G. F. J., Andersen M. N., Thage J. H.. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand.  Field Crops Research. (1996);  47 93-105
  • 21 Johnson I. T.. Glucosinolates: bioavailability and importance to health.  International Journal for Vitamin and Nutritional Research. (2002);  72 26-31
  • 22 Johnson I. T.. Brassica vegetables and human health: glucosinolates in the food chain.  Acta Horticulturae. (2000);  539 39-44
  • 23 Jøndrup P. M., Barnes J. D., Port G. R.. The effect of ozone fumigation and different Brassica rapa lines on the feeding behaviour of Pieris brassicae larvae.  Entomologia Experimentalis et Applicata. (2002);  104 143-151
  • 24 Kainulainen P., Holopainen J. K., Holopainen T.. The influence of elevated CO2 and O3 concentrations on Scots pine needles: changes in starch and secondary metabolites over three exposure years.  Oecologia. (1998);  114 455-460
  • 25 Kainulainen P., Holopainen J. K., Hyttinen H., Oksanen J.. Effect of ozone on the biochemistry and aphid infestation of Scots pine.  Phytochemistry. (1994);  35 39-42
  • 26 Kangasjärvi J., Jaspers P., Kollist H.. Signalling and cell death in ozone-exposed plants.  Plant, Cell and Environment. (2005);  28 1021-1036
  • 27 Kliebenstein D. J., Figuth A., Mitchell-Olds T.. Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana.  Genetics. (2002);  161 1685-1696
  • 28 Krause G. H., Weis E.. Chlorophyll fluorescence and photosynthesis: the basics.  Annual Review of Plant Physiology and Plant Molecular Biology. (1991);  42 313-349
  • 29 Lambdon P. W., Hassall M., Boar R. R., Mithen R.. Asynchrony in the nitrogen and glucoinolate leaf-age profiles of Brassica: is this a defensive strategy against generalist herbivores?.  Agriculture, Ecosystems and Environment. (2003);  97 205-214
  • 30 Lichtenthaler H. K., Miehé J. A.. Fluorescence imaging as a diagnostic tool for plant stress.  Trends in Plant Science. (1997);  2 316-320
  • 31 Littell R. C., Milliken G. A., Stroup W. W., Wolfinger R. D.. SAS System for Mixed Models. Cary, North Carolina; SAS Institute Inc. (1996): 1-633
  • 32 Ludwig-Muller J., Krishna P., Forreiter C.. A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress.  Plant Physiology. (2000);  123 949-958
  • 33 Meyer G. A., Montgomery M. E.. Relationship between leaf age and food quality of cottonwood foliage for the gypsy moth, Lymantria dispar.  Oecologia. (1987);  72 527-532
  • 34 Mikkelsen M. D., Petersen B. L., Glawischnig E., Jensen A. B., Andreasson E., Halkier B. A.. Modulation of CYP97 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways.  Plant Physiology. (2003);  131 298-308
  • 35 Moolman D. W., Aldrich C., van Deventer J. S. J., Stange W. W.. The classification of froth structures in a copper flotation plant by means of a neural net.  International Journal of Mineral Processing. (1995);  43 193-208
  • 36 Novak W. K., Haslberger A. G.. Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods.  Food and Chemical Toxicology. (2000);  38 473-483
  • 37 Pereira F. M. V., Rosa E., Fahey J. W., Stephenson K. K., Carvalho R., Aires A.. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes.  Journal of Agricultural and Food Chemistry. (2002);  50 6239-6244
  • 38 Pratt W. K.. Digital Image Processing. New York; John Wiley and Sons, Inc. (1991): 1-698
  • 39 Qasim M., Ashraf M., Ashraf M. Y., Rehman S. U., Rha E. S.. Salt-induced changes in two canola cultivars differing in salt tolerance.  Biologia Plantarum. (2003);  46 629-632
  • 40 Rask L., Andreasson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J.. Myrosinase: gene family evolution and herbivore defense in Brassicaceae.  Plant Molecular Biology. (2000);  42 93-113
  • 41 Schnug E., Ceynowa J.. Phytopathological aspect of glucosinolates in oilseed rape.  Journal of Agronomy Crop Science. (1990);  156 319-328
  • 42 Shah D. A., Madden L. V.. Nonparametric analysis of ordinal data in designed factorial experiments.  The American Phytopathological Society. (2004);  94 33-43
  • 43 Shah S. K., Gandhi V.. Image classification based on textural features using artificial neural network (ANN).  IE(I) Journal-ET. (2004);  84 72-77
  • 44 Shattuck V. I., Wang W.. Nitrogen dioxide fumigation alters the glucosinolate and nitrate levels in pak choy (Brassica campestris ssp chinensis).  Scientia Horticulturae. (1993);  56 87-100
  • 45 Shattuck V. I., Wang W.. Growth stress induces glucosinolate changes in pakchoy (Brassica campestris ssp chinensis).  Canadian Journal of Plant Science. (1994);  74 595-601
  • 46 Stockwell W. R., Kramm G., Scheel H.-E., Mohnen V. A., Seiler W.. Ozone formation, destruction and exposure in Europe and the United States. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments. Berlin; Springer-Verlag (1997): 227-315
  • 47 Stoewsand G. S.. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables: a review.  Food and Chemical Toxicology. (1995);  33 537-543
  • 48 Trumble J. T., Hare J. D., Musselman R. C., McCool P. M.. Ozone-induced changes in host-plant suitability.  Journal of Chemical Ecology. (1987);  13 203-218
  • 49 Underwood A. J.. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge; Cambridge University Press (1997): 1-504
  • 50 Valcke R.. Fluorescence-imaging: the stethoscope of the plant physiologist. Hemantaranjan, A., ed. Advances in Plant Physiology. Jodhpur, India; Scientific Publishers (2003): 445-462
  • 51 Woodman R. L., Fernandes G. W.. Differential mechanical defence: herbivory, evapotranspiration and leaf-hairs.  Oikos. (1991);  60 11-19

B. Gielen

Department of Biology
Research Group of Plant and Vegetation Ecology
University of Antwerp
Campus Drie Eiken

Universiteitsplein 1

2610 Wilrijk

Belgium

Email: birgit.gielen@ua.ac.be

Editor: B. Demmig-Adams

    >