Zusammenfassung
Kohlenmonoxid entsteht bei inkompletter Verbrennung organischer Materie, wird über
die Lungen in den Kreislauf aufgenommen und verdrängt dort Sauerstoff aus der Hämoglobinbindung.
Dosisabhängig treten Intoxikationserscheinungen wie Kopfschmerzen, Schwindelgefühl,
Übelkeit, Krampfanfälle und Koma auf. Kohlenmonoxid wird aber auch endogen im Rahmen
des Hämabbaus gebildet, eine Reaktion, die durch die Hämoxygenase katalysiert wird.
Das Isoenzym Hämoxygenase-1 wird durch oxidativen Stress induziert und vermittelt
zytoprotektive Mechanismen, die in erster Linie dem gebildeten Kohlenmonoxid zugeschrieben
werden. Exogen zugeführtes Kohlenmonoxid zeigte in tierexperimentellen Studien ebenfalls
protektive Wirkungen. Neben seinen toxischen Eigenschaften sind daher mittlerweile
auch potenziell antiinflammatorische und zytoprotektive Wirkungen von Kohlenmonoxid
in den Mittelpunkt des wissenschaftlichen Interesses gerückt.
Abstract
Carbon monoxide arises during incomplete combustion of organic material, is incorporated
into the circulation via the lungs and displaces oxygen from hemoglobin. Consecutively,
symptoms of intoxication such as headache, vertigo, nausea, seizures and coma may
result in a dose dependent fashion. Carbon monoxide is however also generated endogenously
during heme degradation catalysed by heme oxgenase enzymes. The isoform hemeoxygenase-1
is inducible by oxidative stress and may mediate cytoprotection mainly attributable
to endogenously produced carbon monoxide. Exogenous applied carbon monoxide has also
been shown to confer protection in experimental studies. Meanwhile, in addition to
the toxicological properties, antiinflammatory and cytoprotective effects of carbon
monoxide have moved into the focus of scientific interest.
Schlüsselwörter
Inflammation - Hämoxygenase - Intoxikation - Zytoprotektion
Key words
Inflammation - heme oxygenase - intoxication - cytoprotection
Literatur
- 1
Miyakawa S, Yamanashi H, Kobayashi K, Cleaves H J, Miller S L.
Prebiotic synthesis from CO atmospheres: implications for the origins of life.
Proc Natl Acad Sci USA.
2002;
99
14 628-14 631
- 2
Von Burg R.
Toxicology Update. Carbon monoxide.
J Appl Toxicol.
1999;
19
379-386
- 3
Weaver L K.
Carbon monoxide poisoning.
Crit Care Clin.
1999;
15
297-317
- 4
Ryter S W, Otterbein L E.
Carbon monoxide in biology and medicine.
Bioessays.
2004;
26
270-280
- 5
Tenhunen R, Marver H S, Schmid R.
Microsomal heme oxygenase. Characterization of the enzyme.
J Biol Chem.
1969;
244
6388-6394
- 6
Tenhunen R, Marver H S, Schmid R.
The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase.
Proc Natl Acad Sci U S A.
1968;
61
748-755
- 7
McCoubrey W K Jr, Huang T J, Maines M D.
Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein
heme oxygenase-3.
Eur J Biochem.
1997;
247
725-732
- 8
Otterbein L E, Choi A M.
Heme oxygenase: colors of defense against cellular stress.
Am J Physiol Lung Cell Mol Physiol.
2000;
279
L1029-L1037
- 9
Dulak J, Jozkowicz A.
Carbon monoxide - a „new” gaseous modulator of gene expression.
Acta Biochim Pol.
2003;
50
31-47
- 10
Ryter S W, Morse D, Choi A M.
Carbon monoxide: to boldly go where NO has gone before.
Sci STKE.
2004;
2004
RE6
- 11
Morse D, Choi A M.
Heme Oxygenase-1: From Bench to Bedside.
Am J Respir Crit Care Med.
2005;
172
660-670
- 12
Deshane J, Wright M, Agarwal A.
Heme oxygenase-1 expression in disease states.
Acta Biochim Pol.
2005;
52
273-284
- 13
Furchgott R F, Jothianandan D.
Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation
induced by nitric oxide, carbon monoxide and light.
Blood Vessels.
1991;
28
52-61
- 14
Verma A, Hirsch D J, Glatt C E, Ronnett G V, Snyder S H.
Carbon monoxide: a putative neural messenger.
Science.
1993;
259
381-384
- 15
Otterbein L E.
Carbon monoxide: innovative anti-inflammatory properties of an age-old gas molecule.
Antioxid Redox Signal.
2002;
4
309-319
- 16
Ryter S W, Otterbein L E, Morse D, Choi A M.
Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance.
Mol Cell Biochem.
2002;
234/235
249-263
- 17
Slebos D J, Ryter S W, Choi A M.
Heme oxygenase-1 and carbon monoxide in pulmonary medicine.
Respir Res.
2003;
4
7
- 18
Thiemermann C.
Inhaled CO: deadly gas or novel therapeutic?.
Nat Med.
2001;
7
534-535
- 19
Junge C, Seiler W, Bock R, Greese K D, Radler F.
Über die CO-Produktion von Mikroorganismen.
Naturwissenschaften.
1971;
58
362-363
- 20
Troxler R F, Dokos J M.
Formation of Carbon-Monoxide and Bile Pigment in Red and Blue-Green-Algae.
Plant Physiology.
1973;
51
72-75
- 21
Hund H K, Breuer J, Lingens F, Huttermann J, Kappl R, Fetzner S.
Flavonol 2,4-dioxygenase from Aspergillus niger DSM 821, a type 2 CuII-containing
glycoprotein.
Eur J Biochem.
1999;
263
871-878
- 22
Wilks S S.
Carbon monoxide in green plants.
Science.
1959;
129
964-966
- 23
Levy H.
Tropospheric Budgets for Methane, Carbon-Monoxide, and Related Species.
Journal of Geophysical Research.
1973;
78
5325-5332
- 24 Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I,
Kirchhoff V, Matson P, Midgley P, Wang M.
Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K,
Johnson CA (Hrsg) Climate Change 2001: The Scientific Basis. Contribution of Working
Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,
United Kingdom and New York, NY, USA; Cambridge University Press 2005
- 25
Bakwin P S, Tans P P, Novelli P C.
Carbon-Monoxide Budget in the Northern-Hemisphere.
Geophysical Research Letters.
1994;
21
433-436
- 26
Novelli P C, Masarie K A, Lang P M.
Distributions and recent changes of carbon monoxide in the lower troposphere.
Journal of Geophysical Research-Atmospheres.
1998;
103
19015-19033
- 27
Khalil M AK, Rasmussen R A.
Global Decrease in Atmospheric Carbon-Monoxide Concentration.
Nature.
1994;
370
639-641
- 28 Bayrisches Landesamt für Umweltschutz .Lufthygienischer Jahresbericht 2003. 20,. 2003
- 29
Weinstock B, Niki H.
Carbon-Monoxide Balance in Nature.
Science.
1972;
176
290-292
- 30
Bartholomew G W, Alexander M.
Microbial metabolism of carbon monoxide in culture and in soil.
Appl Environ Microbiol.
1979;
37
932-937
- 31
Bidwell R GS, Fraser D E.
Carbon-Monoxide Uptake and Metabolism by Leaves.
Can J Bot.
1972;
50
1435
- 32
Chappelle E.
Carbon Monoxide Oxidation by Algae.
Biochimica et Biophysica Acta.
1962;
62
45-62
- 33
Haldane J.
The relation of the action of carbonic oxide to oxygen tension.
J Physiol.
1895;
18
201-217
- 34
Haldane J.
The action of carbonic oxide on man.
J Physiol.
1895;
18
430-462
- 35
Centers for Disease Control and Prevention .
Unintentional non-fire-related carbon monoxide exposures - United States, 2001 - 2003.
MMWR Morb Mortal Wkly Rep.
2005;
54
36-39
- 36 Statistisches Bundesamt .Todesursachen in Deutschland 2003. Fachserie 12, Reihe
4 2005
- 37
Coburn R F.
The carbon monoxide body stores.
Ann N Y Acad Sci.
1970;
174
11-22
- 38
Hackney J D, Kaufman G A, Lashier H, Lynn K.
Rebreathing estimate of carbon monoxide hemoglobin.
Arch Environ Health.
1962;
5
300-307
- 39
Dahms T E, Horvath S M, Gray D J.
Technique for accurately producing desired carboxyhemoglobin levels during rest and
exercise.
J Appl Physiol.
1975;
38
366-368
- 40
Hampson N B.
Pulse oximetry in severe carbon monoxide poisoning.
Chest.
1998;
114
1036-1041
- 41
Widdop B.
Analysis of carbon monoxide.
Ann Clin Biochem.
2002;
39
378-391
- 42
Myers R A, De Fazio A, Kelly M P.
Chronic carbon monoxide exposure: a clinical syndrome detected by neuropsychological
tests.
J Clin Psychol.
1998;
54
555-567
- 43
Hampson N B, Mathieu D, Piantadosi C A, Thom S R, Weaver L K.
Carbon monoxide poisoning: interpretation of randomized clinical trials and unresolved
treatment issues.
Undersea Hyperb Med.
2001;
28
157-164
- 44
Weaver L K, Howe S, Hopkins R, Chan K J.
Carboxyhemoglobin half-life in carbon monoxide-poisoned patients treated with 100
% oxygen at atmospheric pressure.
Chest.
2000;
117
801-808
- 45 Juurlink D, Buckley N, Stanbrook M, Isbister G, Bennett M, McGuigan M. Hyperbaric
oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev 2005: CD002041
- 46
Fisher J A, Rucker J, Sommer L Z, Vesely A, Lavine E, Greenwald Y, Volgyesi G, Fedorko L,
Iscoe S.
Isocapnic hyperpnea accelerates carbon monoxide elimination.
Am J Respir Crit Care Med.
1999;
159
1289-1292
- 47
Kreck T C, Shade E D, Lamm W J, McKinney S E, Hlastala M P.
Isocapnic hyperventilation increases carbon monoxide elimination and oxygen delivery.
Am J Respir Crit Care Med.
2001;
163
458-462
- 48
Takeuchi A, Vesely A, Rucker J, Sommer L Z, Tesler J, Lavine E, Slutsky A S, Maleck W H,
Volgyesi G, Fedorko L, Iscoe S, Fisher J A.
A simple „new” method to accelerate clearance of carbon monoxide.
Am J Respir Crit Care Med.
2000;
161
1816-1819
- 49
Stewart R D.
The effect of carbon monoxide on humans.
Annu Rev Pharmacol.
1975;
15
409-423
- 50
Noguchi M, Yoshida T, Kikuchi G.
Identification of the product of heme degradation catalyzed by the heme oxygenase
system as biliverdin IX alpha by reversed-phase high-performance liquid chromatography.
J Biochem (Tokyo).
1982;
91
1479-1483
- 51
Yoshida T, Kikuchi G.
Features of the reaction of heme degradation catalyzed by the reconstituted microsomal
heme oxygenase system.
J Biol Chem.
1978;
253
4230-4236
- 52
Yoshida T, Noguchi M, Kikuchi G.
Oxygenated form of heme · heme oxygenase complex and requirement for second electron
to initiate heme degradation from the oxygenated complex.
J Biol Chem.
1980;
255
4418-4420
- 53
Yoshida T, Noguchi M, Kikuchi G.
The step of carbon monoxide liberation in the sequence of heme degradation catalyzed
by the reconstituted microsomal heme oxygenase system.
J Biol Chem.
1982;
257
9345-9348
- 54
Maines M D, Trakshel G M, Kutty R K.
Characterization of two constitutive forms of rat liver microsomal heme oxygenase.
Only one molecular species of the enzyme is inducible.
J Biol Chem.
1986;
261
411-419
- 55
Alam J, Cai J, Smith A.
Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5’ sequences
are required for induction by heme or heavy metals.
J Biol Chem.
1994;
269
1001-1009
- 56
Alam J, Shibahara S, Smith A.
Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse
hepatoma cells.
J Biol Chem.
1989;
264
6371-6375
- 57
Lee P J, Jiang B H, Chin B Y, Iyer N V, Alam J, Semenza G L, Choi A M.
Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1
gene in response to hypoxia.
J Biol Chem.
1997;
272
5375-5381
- 58
Murphy B J, Laderoute K R, Short S M, Sutherland R M.
The identification of heme oxygenase as a major hypoxic stress protein in Chinese
hamster ovary cells.
Br J Cancer.
1991;
64
69-73
- 59
Applegate L A, Luscher P, Tyrrell R M.
Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian
cells.
Cancer Res.
1991;
51
974-978
- 60
Camhi S L, Alam J, Otterbein L, Sylvester S L, Choi A M.
Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by
AP-1 activation.
Am J Respir Cell Mol Biol.
1995;
13
387-398
- 61
Camhi S L, Alam J, Wiegand G W, Chin B Y, Choi A M.
Transcriptional activation of the HO-1 gene by lipopolysaccharide is mediated by 5’
distal enhancers: role of reactive oxygen intermediates and AP-1.
Am J Respir Cell Mol Biol.
1998;
18
226-234
- 62
Durante W, Peyton K J, Schafer A I.
Platelet-derived growth factor stimulates heme oxygenase-1 gene expression and carbon
monoxide production in vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol.
1999;
19
2666-2672
- 63
Gemsa D, Woo C H, Fudenberg H H, Schmid R.
Stimulation of heme oxygenase in macrophages and liver by endotoxin.
J Clin Invest.
1974;
53
647-651
- 64
Kappas A, Drummond G S.
Control of heme and cytochrome P-450 metabolism by inorganic metals, organometals
and synthetic metalloporphyrins.
Environ Health Perspect.
1984;
57
301-306
- 65
Keyse S M, Tyrrell R M.
Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts
by UVA radiation, hydrogen peroxide, and sodium arsenite.
Proc Natl Acad Sci USA.
1989;
86
99-103
- 66
Keyse S M, Tyrrell R M.
Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a
32-kDa stress protein in normal human skin fibroblasts.
J Biol Chem.
1987;
262
14 821-14 825
- 67
Kurata S, Matsumoto M, Tsuji Y, Nakajima H.
Lipopolysaccharide activates transcription of the heme oxygenase gene in mouse M1
cells through oxidative activation of nuclear factor kappa B.
Eur J Biochem.
1996;
239
566-571
- 68
Kutty R K, Nagineni C N, Kutty G, Hooks J J, Chader G J, Wiggert B.
Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells
by transforming growth factor-beta.
J Cell Physiol.
1994;
159
371-378
- 69
Rushworth S A, Chen X L, Mackman N, Ogborne R M, O’Connell M A.
Lipopolysaccharide-induced heme oxygenase-1 expression in human monocytic cells is
mediated via Nrf2 and protein kinase C.
J Immunol.
2005;
175
4408-4415
- 70
Taketani S, Kohno H, Yoshinaga T, Tokunaga R.
Induction of heme oxygenase in rat hepatoma cells by exposure to heavy metals and
hyperthermia.
Biochem Int.
1988;
17
665-672
- 71
Taketani S, Kohno H, Yoshinaga T, Tokunaga R.
The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is
heme oxygenase.
FEBS Lett.
1989;
245
173-176
- 72
Taketani S, Sato H, Yoshinaga T, Tokunaga R, Ishii T, Bannai S.
Induction in mouse peritoneal macrophages of 34 kDa stress protein and heme oxygenase
by sulfhydryl-reactive agents.
J Biochem (Tokyo).
1990;
108
28-32
- 73
Terry C M, Clikeman J A, Hoidal J R, Callahan K S.
Effect of tumor necrosis factor-alpha and interleukin-1 alpha on heme oxygenase-1
expression in human endothelial cells.
Am J Physiol.
1998;
274
H883-H891
- 74
Tsukiji T, Takahashi T, Mizobuchi S, Suzuki T, Hirakawa M, Watanabe S, Akagi R.
Gene expression of heme oxygenase-1 during glial activation by lipopolysaccharide.
Res Commun Mol Pathol Pharmacol.
2000;
107
187-196
- 75
Tüzüner E, Liu L, Shimada M, Yilmaz E, Glanemann M, Settmacher U, Langrehr J M, Jonas S,
Neuhaus P, Nussler A K.
Heme oxygenase-1 protects human hepatocytes in vitro against warm and cold hypoxia.
J Hepatol.
2004;
41
764-772
- 76
Marquis J C, Demple B.
Complex genetic response of human cells to sublethal levels of pure nitric oxide.
Cancer Res.
1998;
58
3435-3440
- 77
Hartsfield C L, Alam J, Cook J L, Choi A M.
Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by
nitric oxide.
Am J Physiol.
1997;
273
L980-L988
- 78
Motterlini R, Foresti R, Intaglietta M, Winslow R M.
NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative
stress to endothelium.
Am J Physiol.
1996;
270
H107-H114
- 79
Yee E L, Pitt B R, Billiar T R, Kim Y M.
Effect of nitric oxide on heme metabolism in pulmonary artery endothelial cells.
Am J Physiol.
1996;
271
L512-L518
- 80
Durante W, Kroll M H, Christodoulides N, Peyton K J, Schafer A I.
Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production
in vascular smooth muscle cells.
Circ Res.
1997;
80
557-564
- 81
Takahashi K, Hara E, Suzuki H, Sasano H, Shibahara S.
Expression of heme oxygenase isozyme mRNAs in the human brain and induction of heme
oxygenase-1 by nitric oxide donors.
J Neurochem.
1996;
67
482-489
- 82
Maines M D, Ewing J F.
Stress response of the rat testis: in situ hydridization and immunohistochemical analysis
of heme oxygenase-1 (HSP32) induction by hyperthermia.
Biol Reprod.
1996;
54
1070-1079
- 83
Ewing J F, Raju V S, Maines M D.
Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated
elevation of cyclic 3′:5′-guanosine monophosphate.
J Pharmacol Exp Ther.
1994;
271
408-414
- 84
Ewing J F, Haber S N, Maines M D.
Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat
brain: hyperthermia causes rapid induction of mRNA and protein.
J Neurochem.
1992;
58
1140-1149
- 85
Ewing J F, Maines M D.
Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain:
heme oxygenase 2 is not a heat shock protein.
Proc Natl Acad Sci U S A.
1991;
88
5364-5368
- 86
Okinaga S, Takahashi K, Takeda K, Yoshizawa M, Fujita H, Sasaki H, Shibahara S.
Regulation of human heme oxygenase-1 gene expression under thermal stress.
Blood.
1996;
87
5074-5084
- 87
Nath K A, Balla G, Vercellotti G M, Balla J, Jacob H S, Levitt M D, Rosenberg M E.
Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the
rat.
J Clin Invest.
1992;
90
267-270
- 88
Otterbein L, Sylvester S L, Choi A M.
Hemoglobin provides protection against lethal endotoxemia in rats: the role of heme
oxygenase-1.
Am J Respir Cell Mol Biol.
1995;
13
595-601
- 89
Minamino T, Christou H, Hsieh C M, Liu Y, Dhawan V, Abraham N G, Perrella M A, Mitsialis S A,
Kourembanas S.
Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular
responses to hypoxia.
Proc Natl Acad Sci USA.
2001;
98
8798-8803
- 90
Suttner D M, Sridhar K, Lee C S, Tomura T, Hansen T N, Dennery P A.
Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity
in lung cells.
Am J Physiol.
1999;
276
L443-L451
- 91
Chen K, Gunter K, Maines M D.
Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death.
J Neurochem.
2000;
75
304-313
- 92
Abraham N G, Lavrovsky Y, Schwartzman M L, Stoltz R A, Levere R D, Gerritsen M E,
Shibahara S, Kappas A.
Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial
cells: protective effect against heme and hemoglobin toxicity.
Proc Natl Acad Sci U S A.
1995;
92
6798-6802
- 93
Poss K D, Tonegawa S.
Reduced stress defense in heme oxygenase 1-deficient cells.
Proc Natl Acad Sci U S A.
1997;
94
10 925-10 930
- 94
Suttner D M, Dennery P A.
Reversal of HO-1 related cytoprotection with increased expression is due to reactive
iron.
FASEB J.
1999;
13
1800-1809
- 95
Kvam E, Hejmadi V, Ryter S, Pourzand C, Tyrrell R M.
Heme oxygenase activity causes transient hypersensitivity to oxidative ultraviolet
A radiation that depends on release of iron from heme.
Free Radic Biol Med.
2000;
28
1191-1196
- 96
Poole B, Wang W, Chen Y C, Zolty E, Falk S, Mitra A, Schrier R.
The Role of Heme Oxygenase-1 in Endotoxemic Acute Renal Failure.
Am J Physiol Renal Physiol.
2005;
289
F1382-F1385
- 97
Paul G, Bataille F, Obermeier F, Bock J, Klebl F, Strauch U, Lochbaum D, Rummele P,
Farkas S, Scholmerich J, Fleck M, Rogler G, Herfarth H.
Analysis of intestinal haem-oxygenase-1 (HO-1) in clinical and experimental colitis.
Clin Exp Immunol.
2005;
140
547-555
- 98
Geuken E, Buis C I, Visser D S, Blokzijl H, Moshage H, Nemes B, Leuvenink H G, de
Jong K P, Peeters P M, Slooff M J, Porte R J.
Expression of heme oxygenase-1 in human livers before transplantation correlates with
graft injury and function after transplantation.
Am J Transplant.
2005;
5
1875-1885
- 99
Eisenstein R S, Garcia-Mayol D, Pettingell W, Munro H N.
Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different
forms of iron.
Proc Natl Acad Sci U S A.
1991;
88
688-692
- 100
Balla G, Jacob H S, Balla J, Rosenberg M, Nath K, Apple F, Eaton J W, Vercellotti G M.
Ferritin: a cytoprotective antioxidant strategem of endothelium.
J Biol Chem.
1992;
267
18 148-18 153
- 101
Ferris C D, Jaffrey S R, Sawa A, Takahashi M, Brady S D, Barrow R K, Tysoe S A, Wolosker H,
Baranano D E, Dore S, Poss K D, Snyder S H.
Haem oxygenase-1 prevents cell death by regulating cellular iron.
Nat Cell Biol.
1999;
1
152-157
- 102
Baranano D E, Wolosker H, Bae B I, Barrow R K, Snyder S H, Ferris C D.
A mammalian iron ATPase induced by iron.
J Biol Chem.
2000;
275
15 166-15 173
- 103
Tenhunen R, Ross M E, Marver H S, Schmid R.
Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase:
partial purification and characterization.
Biochemistry.
1970;
9
298-303
- 104
Gopinathan V, Miller N J, Milner A D, Rice-Evans C A.
Bilirubin and ascorbate antioxidant activity in neonatal plasma.
FEBS Lett.
1994;
349
197-200
- 105
Adin C A, Croker B P, Agarwal A.
Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated
perfused rat kidney.
Am J Physiol Renal Physiol.
2004;
288
F778-F784
- 106
Ceran C, Sonmez K, Turkyllmaz Z, Demirogullarl B, Dursun A, Duzgun E, Basaklar A C,
Kale N.
Effect of bilirubin in ischemia/reperfusion injury on rat small intestine.
J Pediatr Surg.
2001;
36
1764-1767
- 107
Fondevila C, Shen X D, Tsuchiyashi S, Yamashita K, Csizmadia E, Lassman C, Busuttil R W,
Kupiec-Weglinski J W, Bach F H.
Biliverdin therapy protects rat livers from ischemia and reperfusion injury.
Hepatology.
2004;
40
1333-1341
- 108
Clark J E, Foresti R, Sarathchandra P, Kaur H, Green C J, Motterlini R.
Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction.
Am J Physiol Heart Circ Physiol.
2000;
278
H643-H651
- 109
Hartsfield C L.
Cross talk between carbon monoxide and nitric oxide.
Antioxid Redox Signal.
2002;
4
301-307
- 110
Stone J R, Marletta M A.
Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon
monoxide and spectral characterization of the ferrous and ferric states.
Biochemistry.
1994;
33
5636-5640
- 111
Brune B, Ullrich V.
Inhibition of platelet aggregation by carbon monoxide is mediated by activation of
guanylate cyclase.
Mol Pharmacol.
1987;
32
497-504
- 112
Fujita T, Toda K, Karimova A, Yan S F, Naka Y, Yet S F, Pinsky D J.
Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by
derepression of fibrinolysis.
Nat Med.
2001;
7
598-604
- 113
Liu Y, Christou H, Morita T, Laughner E, Semenza G L, Kourembanas S.
Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial
growth factor gene via the 5’ enhancer.
J Biol Chem.
1998;
273
15 257-15 262
- 114
Morita T, Perrella M A, Lee M E, Kourembanas S.
Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.
Proc Natl Acad Sci USA.
1995;
92
1475-1479
- 115
Morita T, Kourembanas S.
Endothelial cell expression of vasoconstrictors and growth factors is regulated by
smooth muscle cell-derived carbon monoxide.
J Clin Invest.
1995;
96
2676-2682
- 116
Morita T, Mitsialis S A, Koike H, Liu Y, Kourembanas S.
Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells.
J Biol Chem.
1997;
272
32 804-32 809
- 117
Togane Y, Morita T, Suematsu M, Ishimura Y, Yamazaki J I, Katayama S.
Protective roles of endogenous carbon monoxide in neointimal development elicited
by arterial injury.
Am J Physiol Heart Circ Physiol.
2000;
278
H623-H632
- 118
Zakhary R, Gaine S P, Dinerman J L, Ruat M, Flavahan N A, Snyder S H.
Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent
relaxation.
Proc Natl Acad Sci USA.
1996;
93
795-798
- 119
Cardell L O, Ueki I F, Stjarne P, Agusti C, Takeyama K, Linden A, Nadel J A.
Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger.
Br J Pharmacol.
1998;
124
1065-1068
- 120
Wang R, Wu L, Wang Z.
The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells.
Pflugers Arch.
1997;
434
285-291
- 121
Brouard S, Otterbein L E, Anrather J, Tobiasch E, Bach F H, Choi A M, Soares M P.
Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis.
J Exp Med.
2000;
192
1015-1026
- 122
Otterbein L E, Otterbein S L, Ifedigbo E, Liu F, Morse D E, Fearns C, Ulevitch R J,
Knickelbein R, Flavell R A, Choi A M.
MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection
against oxidant-induced lung injury.
Am J Pathol.
2003;
163
2555-2563
- 123
Otterbein L E, Bach F H, Alam J, Soares M, Tao L H, Wysk M, Davis R J, Flavell R A,
Choi A M.
Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein
kinase pathway.
Nat Med.
2000;
6
422-428
- 124
Sato K, Balla J, Otterbein L, Smith R N, Brouard S, Lin Y, Csizmadia E, Sevigny J,
Robson S C, Vercellotti G, Choi A M, Bach F H, Soares M P.
Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat
cardiac transplants.
J Immunol.
2001;
166
4185-4194
- 125
Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S.
Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1
deficiency.
J Clin Invest.
1999;
103
129-135
- 126
Kawashima A, Oda Y, Yachie A, Koizumi S, Nakanishi I.
Heme oxygenase-1 deficiency: the first autopsy case.
Hum Pathol.
2002;
33
125-130
- 127
Horvath I, Donnelly L E, Kiss A, Paredi P, Kharitonov S A, Barnes P J.
Raised levels of exhaled carbon monoxide are associated with an increased expression
of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress.
Thorax.
1998;
53
668-672
- 128
Paredi P, Shah P L, Montuschi P, Sullivan P, Hodson M E, Kharitonov S A, Barnes P J.
Increased carbon monoxide in exhaled air of patients with cystic fibrosis.
Thorax.
1999;
54
917-920
- 129
Scharte M, Bone H G, Van Aken H, Meyer J.
Increased carbon monoxide in exhaled air of critically ill patients.
Biochem Biophys Res Commun.
2000;
267
423-426
- 130
Biernacki W A, Kharitonov S A, Barnes P J.
Exhaled carbon monoxide in patients with lower respiratory tract infection.
Respir Med.
2001;
95
1003-1005
- 131
Montuschi P, Kharitonov S A, Barnes P J.
Exhaled carbon monoxide and nitric oxide in COPD.
Chest.
2001;
120
496-501
- 132
Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A.
Increased endogenous carbon monoxide production in severe sepsis.
Intensive Care Med.
2002;
28
793-796
- 133
Andersson J A, Uddman R, Cardell L O.
Increased carbon monoxide levels in the nasal airways of subjects with a history of
seasonal allergic rhinitis and in patients with upper respiratory tract infection.
Clin Exp Allergy.
2002;
32
224-227
- 134
Hayashi M, Takahashi T, Morimatsu H, Fujii H, Taga N, Mizobuchi S, Matsumi M, Katayama H,
Yokoyama M, Taniguchi M, Morita K.
Increased carbon monoxide concentration in exhaled air after surgery and anesthesia.
Anesth Analg.
2004;
99
444-448
- 135
Morimatsu H, Takahashi T, Maeshima K, Inoue K, Kawakami T, Shimizu H, Takeuchi M,
Yokoyama M, Katayama H, Morita K.
Increased heme catabolism in critically ill patients: Correlation among exhaled carbon
monoxide, arterial carboxyhemoglobin and serum bilirubin IXα concentrations.
Am J Physiol Lung Cell Mol Physiol.
2005;
veröffentlicht on-line, doi: 10. 1152/ajplung. 00 031. 2005
- 136
Nakao A, Kimizuka K, Stolz D B, Neto J S, Kaizu T, Choi A M, Uchiyama T, Zuckerbraun B S,
Nalesnik M A, Otterbein L E, Murase N.
Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion
injury.
Am J Pathol.
2003;
163
1587-1598
- 137
Nakao A, Moore B A, Murase N, Liu F, Zuckerbraun B S, Bach F H, Choi A M, Nalesnik M A,
Otterbein L E, Bauer A J.
Immunomodulatory effects of inhaled carbon monoxide on rat syngeneic small bowel graft
motility.
Gut.
2003;
52
1278-1285
- 138
Otterbein L E, Zuckerbraun B S, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N,
Smith R N, Csizmadia E, Tyagi S, Akamatsu Y, Flavell R J, Billiar T R, Tzeng E, Bach F H,
Choi A M, Soares M P.
Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft
rejection and with balloon injury.
Nat Med.
2003;
9
183-190
- 139
Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K, Nagai R.
Carbon monoxide protects against cardiac ischemia-reperfusion injury in vivo via MAPK
and Akt-eNOS pathways.
Arterioscler Thromb Vasc Biol.
2004;
24
1848-1853
- 140
Lavitrano M, Smolenski R T, Musumeci A, Maccherini M, Slominska E, Di Florio E, Bracco A,
Mancini A, Stassi G, Patti M, Giovannoni R, Froio A, Simeone F, Forni M, Bacci M L,
D’Alise G, Cozzi E, Otterbein L E, Yacoub M H, Bach F H, Calise F.
Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion
after cardiopulmonary bypass in pigs.
FASEB J.
2004;
18
1093-1095
- 141
Neto J S, Nakao A, Kimizuka K, Romanosky A J, Stolz D B, Uchiyama T, Nalesnik M A,
Otterbein L E, Murase N.
Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide.
Am J Physiol Renal Physiol.
2004;
287
F979-F989
- 142
Ott M C, Scott J R, Bihari A, Badhwar A, Otterbein L E, Gray D K, Harris K A, Potter R F.
Inhalation of carbon monoxide prevents liver injury and inflammation following hind
limb ischemia/reperfusion.
FASEB J.
2005;
19
106-108
- 143
Zuckerbraun B S, McCloskey C A, Gallo D, Liu F, Ifedigbo E, Otterbein L E, Billiar T R.
Carbon monoxide prevents multiple organ injury in a model of hemorrhagic schock and
resuscitation.
Shock.
2005;
23
527-532
- 144
Zuckerbraun B S, Otterbein L E, Boyle P, Jaffe R, Upperman J, Zamora R, Ford H R.
Carbon monoxide protects against the development of experimental necrotizing enterocolitis.
Am J Physiol Gastrointest Liver Physiol.
2005;
289
G607-G613
- 145
Clayton C E, Carraway M S, Suliman H B, Thalmann E D, Thalmann K N, Schmechel D E,
Piantadosi C A.
Inhaled carbon monoxide and hyperoxic lung injury in rats.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
L949-L957
- 146
Ghosh S, Wilson M R, Choudhury S, Yamamoto H, Goddard M E, Falusi B, Marczin N, Takata M.
Effects of Inhaled Carbon Monoxide on Acute Lung Injury in Mice.
Am J Physiol Lung Cell Mol Physiol.
2005;
288
L1003-L1009
- 147
Berberat P O, Rahim Y I, Yamashita K, Warny M M, Csizmadia E, Robson S C, Bach F H.
Heme oxygenase-1-generated biliverdin ameliorates experimental murine colitis.
Inflamm Bowel Dis.
2005;
11
350-359
- 148
Mayr F B, Spiel A, Leitner J, Marsik C, Germann P, Ullrich R, Wagner O, Jilma B.
Effects of Carbon Monoxide Inhalation during Experimental Endotoxemia in Humans.
Am J Respir Crit Care Med.
2005;
171
354-360
- 149
Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J.
Carbon monoxide-releasing molecules: characterization of biochemical and vascular
activities.
Circ Res.
2002;
90
e17-e24
- 150
Clark J E, Naughton P, Shurey S, Green C J, Johnson T R, Mann B E, Foresti R, Motterlini R.
Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule.
Circ Res.
2003;
93
e2-e8
- 151
Martins P N, Reuzel-Selke A, Jurisch A, Atrott K, Pascher A, Pratschke J, Buelow R,
Neuhaus P, Volk H D, Tullius S G.
Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic
graft deterioration.
Transplant Proc.
2005;
37
379-381
- 152
Dorman R B, Wunder C, Brock R W.
Cobalt protoporphyrin protects against hepatic parenchymal injury and microvascular
dysfunction during experimental rhabdomyolysis.
Shock.
2005;
23
275-280
- 153
Almolki A, Taille C, Martin G F, Jose P J, Zedda C, Conti M, Megret J, Henin D, Aubier M,
Boczkowski J.
Heme oxygenase attenuates allergen-induced airway inflammation and hyperreactivity
in guinea pigs.
Am J Physiol Lung Cell Mol Physiol.
2004;
287
L26-L34
- 154
Woo J, Iyer S, Mori N, Buelow R.
Alleviation of graft-versus-host disease after conditioning with cobalt-protoporphyrin,
an inducer of heme oxygenase-1.
Transplantation.
2000;
69
623-633
- 155
Tullius S G, Nieminen-Kelha M, Buelow R, Reutzel-Selke A, Martins P N, Pratschke J,
Bachmann U, Lehmann M, Southard D, Iyer S, Schmidbauer G, Sawitzki B, Reinke P, Neuhaus P,
Volk H D.
Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor
treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1.
Transplantation.
2002;
74
591-598
- 156
Nath K A, Grande J P, Croatt A J, Likely S, Hebbel R P, Enright H.
Intracellular targets in heme protein-induced renal injury.
Kidney Int.
1998;
53
100-111
- 157
Suliman H B, Carraway M S, Velsor L W, Day B J, Ghio A J, Piantadosi C A.
Rapid mtDNA deletion by oxidants in rat liver mitochondria after hemin exposure.
Free Radic Biol Med.
2002;
32
246-256
- 158
Lee P J, Alam J, Sylvester S L, Inamdar N, Otterbein L, Choi A M.
Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury.
Am J Respir Cell Mol Biol.
1996;
14
556-568
- 159
Otterbein L E, Mantell L L, Choi A M.
Carbon monoxide provides protection against hyperoxic lung injury.
Am J Physiol.
1999;
276
L688-L694
- 160
Dolinay T, Szilasi M, Liu M, Choi A M.
Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced
lung injury.
Am J Respir Crit Care Med.
2004;
170
613-620
- 161
Moore B A, Overhaus M, Whitcomb J, Ifedigbo E, Choi A M, Otterbein L E, Bauer A J.
Brief inhalation of low-dose carbon monoxide protects rodents and swine from postoperative
ileus.
Crit Care Med.
2005;
33
1317-1326
- 162
Zhou Z, Song R, Fattman C L, Greenhill S, Alber S, Oury T D, Choi A M, Morse D.
Carbon monoxide suppresses bleomycin-induced lung fibrosis.
Am J Pathol.
2005;
166
27-37
Prof. Dr. Stephan A. Loer, M. D., M. Sc.
Klinik für Anästhesiologie
Universitätsklinikum Düsseldorf · Moorenstraße 5 · 40225 Düsseldorf
Email: loer@med.uni-duesseldorf.de