Subscribe to RSS
DOI: 10.1055/s-2006-927387
© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York
Mouse Models of Liver Fibrosis
Mausmodelle der LeberfibrosePublication History
manuscript received: 19.9.2006
manuscript accepted: 15.12.2006
Publication Date:
19 January 2007 (online)

Zusammenfassung
Leberfibrose ist der gemeinsame Endweg einer Vielzahl von Lebererkrankungen. Mausmodelle der Leberfibrose werden bemüht, um die Mechanismen der Fibrogenese und Fibrolyse genau zu charakterisieren und potenzielle Therapien zu testen. Es sind verschiedene Mausmodelle verfügbar, die Leberfibrose entwickeln: Induziert über 1. Verabreichung von Hepatotoxinen, 2. durch Gallengangsligatur oder über 3. immunologische Mechanismen sowie, in jüngerer Zeit zunehmend, auch 4. transgene Mausmodelle mit spontaner oder induzierbarer Fibroseentwicklung. Sie stellen wichtige Instrumente dar, mit deren Hilfe die Mechanismen der Fibrogenese untersucht werden können. Weiterhin bieten die unterschiedlichen Modelle die Möglichkeit, die ätiologisch unterschiedlichen Lebererkrankungen des Menschen nachzuvollziehen. In neueren Ansätzen wird versucht, Leberfibrose durch ein therapeutisches Eingreifen in den Signaltransduktionsweg zu inhibieren beziehungsweise rückgängig zu machen.
Abstract
Liver fibrosis is the final common pathway in a variety of liver diseases. To model liver fibrosis in mice is important as mechanisms not only of fibrogenesis, but also of fibrolysis, need to be clearly defined. Also, small rodents present a possibility to test potential treatments in vivo. Today, there are several mouse models of liver fibrosis available - induced by administration of hepatotoxins, by bile duct ligation or by immunological mechanisms - and, more and more widespread, transgenic animal models elucidating pathogenesis and common pathways in liver fibrosis. These different mouse models are complementary as they represent different pathways to fibrosis - as also seen in human disease. Recently, several promising treatment methods interfering with cytokine signaling have been published, offering new potential therapeutic interventions. This review seeks to summarize the different methods of fibrosis induction as well as to briefly review some promising new treatment options for fibrosis in the mouse model.
Schlüsselwörter
Leber - Leberfibrose - Zirrhose - Mausmodelle
Key words
liver - fibrosis - cirrhosis - mice
References
- 1
Arthur M J.
Collagenases and liver fibrosis.
J Hepatol.
1995;
22
43-48
MissingFormLabel
- 2
Friedman S L.
Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic
fibrosis. Mechanisms and treatment strategies.
N Engl J Med.
1993;
328
1828-1835
MissingFormLabel
- 3
Knittel T, Kobold D, Piscaglia F. et al .
Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased
rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair.
Histochem Cell Biol.
1999;
112
387-401
MissingFormLabel
- 4
Knittel T, Kobold D, Saile B. et al .
Rat liver myofibroblasts and hepatic stellate cells: different cell populations of
the fibroblast lineage with fibrogenic potential.
Gastroenterology.
1999;
117
1205-1221
MissingFormLabel
- 5
Mitaka T, Sato F, Mizuguchi T. et al .
Reconstruction of hepatic organoid by rat small hepatocytes and hepatic nonparenchymal
cells.
Hepatology.
1999;
29
111-125
MissingFormLabel
- 6
Bedossa P, Paradis V.
Liver extracellular matrix in health and disease.
J Pathol.
2003;
200
504-515
MissingFormLabel
- 7
Lalazar A, Wong L, Yamasaki G. et al .
Early genes induced in hepatic stellate cells during wound healing.
Gene.
1997;
195
235-243
MissingFormLabel
- 8
Eng F J, Friedman S L.
Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes
complex.
Am J Physiol Gastrointest Liver Physiol.
2000;
279
G7-G11
MissingFormLabel
- 9
Ramadori G, Veit T, Schwogler S. et al .
Expression of the gene of the alpha-smooth muscle-actin isoform in rat liver and in
rat fat-storing (ITO) cells.
Virchows Arch B Cell Pathol Incl Mol Pathol.
1990;
59
349-357
MissingFormLabel
- 10
Knittel T, Schuppan D, Meyer zum Buschenfelde K H. et al .
Differential expression of collagen types I, III, and IV by fat-storing (Ito) cells
in vitro.
Gastroenterology.
1992;
102
1724-1735
MissingFormLabel
- 11
Ramadori G, Rieder H, Knittel T. et al .
Fat storing cells (FSC) of rat liver synthesize and secrete fibronectin. Comparison
with hepatocytes.
J Hepatol.
1987;
4
190-197
MissingFormLabel
- 12
Olaso E, Friedman S L.
Molecular regulation of hepatic fibrogenesis.
J Hepatol.
1998;
29
836-847
MissingFormLabel
- 13
Blobe G C, Schiemann W P, Lodish H F.
Role of transforming growth factor beta in human disease.
N Engl J Med.
2000;
342
1350-1358
MissingFormLabel
- 14
Zhou S, Kinzler K W, Vogelstein B.
Going mad with Smads.
N Engl J Med.
1999;
341
1144-1146
MissingFormLabel
- 15
Knittel T, Mehde M, Kobold D. et al .
Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal
and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1.
J Hepatol.
1999;
30
48-60
MissingFormLabel
- 16
Arthur M J, Mann D A, Iredale J P.
Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis.
J Gastroenterol Hepatol.
1998;
13 (Suppl)
S33-S38
MissingFormLabel
- 17
Iredale J P, Benyon R C, Arthur M J. et al .
Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative
to interstitial collagenase messenger RNA in experimental liver injury and fibrosis.
Hepatology.
1996;
24
176-184
MissingFormLabel
- 18
Irie J, Wu Y, Wicker L S. et al .
NOD. c3c4 congenic mice develop autoimmune biliary disease that serologically and
pathogenetically models human primary biliary cirrhosis.
J Exp Med.
2006;
203
1209-1219
MissingFormLabel
- 19
Oertelt S, Lian Z X, Cheng C M. et al .
Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II
dominant-negative mice.
J Immunol.
2006;
177
1655-1660
MissingFormLabel
- 20
Duffield J S, Forbes S J, Constandinou C M. et al .
Selective depletion of macrophages reveals distinct, opposing roles during liver injury
and repair.
J Clin Invest.
2005;
115
56-65
MissingFormLabel
- 21
Radaeva S, Sun R, Jaruga B. et al .
Natural killer cells ameliorate liver fibrosis by killing activated stellate cells
in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent
manners.
Gastroenterology.
2006;
130
435-452
MissingFormLabel
- 22
Safadi R, Ohta M, Alvarez C E. et al .
Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic
interleukin-10 from hepatocytes.
Gastroenterology.
2004;
127
870-882
MissingFormLabel
- 23
Stavitsky A B.
Regulation of granulomatous inflammation in experimental models of schistosomiasis.
Infect Immun.
2004;
72
1-12
MissingFormLabel
- 24
Pearce E J.
Priming of the immune response by schistosome eggs.
Parasite Immunol.
2005;
27
265-270
MissingFormLabel
- 25
Bartley P B, Ramm G A, Jones M K. et al .
A contributory role for activated hepatic stellate cells in the dynamics of Schistosoma
japonicum egg-induced fibrosis.
Int J Parasitol.
2006;
36
993-1001
MissingFormLabel
- 26
Singh K P, Gerard H C, Hudson A P. et al .
Dynamics of collagen, MMP and TIMP gene expression during the granulomatous, fibrotic
process induced by Schistosoma mansoni eggs.
Ann Trop Med Parasitol.
2004;
98
581-593
MissingFormLabel
- 27
Kresina T F, He Q, Degli Esposti S. et al .
Gene expression of transforming growth factor beta 1 and extracellular matrix proteins
in murine Schistosoma mansoni infection.
Gastroenterology.
1994;
107
773-780
MissingFormLabel
- 28
Chiaramonte M G, Donaldson D D, Cheever A W. et al .
An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type
2-dominated inflammatory response.
J Clin Invest.
1999;
104
777-785
MissingFormLabel
- 29
Kimura K, Ando K, Ohnishi H. et al .
Immunopathogenesis of hepatic fibrosis in chronic liver injury induced by repeatedly
administered concanavalin A.
Int Immunol.
1999;
11
1491-1500
MissingFormLabel
- 30
Louis H, Le Moine A, Quertinmont E. et al .
Repeated concanavalin A challenge in mice induces an interleukin 10-producing phenotype
and liver fibrosis.
Hepatology.
2000;
31
381-390
MissingFormLabel
- 31
Reinehr R, Becker S, Keitel V. et al .
Bile salt-induced apoptosis involves NADPH oxidase isoform activation.
Gastroenterology.
2005;
129
2009-2031
MissingFormLabel
- 32
Accatino L, Contreras A, Fernandez S. et al .
The effect of complete biliary obstruction on bile flow and bile acid excretion: postcholestatic
choleresis in the rat.
J Lab Clin Med.
1979;
93
706-717
MissingFormLabel
- 33
Chang M L, Yeh C T, Chang P Y. et al .
Comparison of murine cirrhosis models induced by hepatotoxin administration and common
bile duct ligation.
World J Gastroenterol.
2005;
11
4167-4172
MissingFormLabel
- 34
Arias M, Sauer-Lehnen S, Treptau J. et al .
Adenoviral expression of a transforming growth factor-beta1 antisense mRNA is effective
in preventing liver fibrosis in bile-duct ligated rats.
BMC Gastroenterol.
2003;
3
29
MissingFormLabel
- 35
Uchinami H, Seki E, Brenner D A. et al .
Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis.
Hepatology.
2006;
44
420-429
MissingFormLabel
- 36
Canbay A, Guicciardi M E, Higuchi H. et al .
Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis.
J Clin Invest.
2003;
112
152-159
MissingFormLabel
- 37
Canbay A, Feldstein A E, Higuchi H. et al .
Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression.
Hepatology.
2003;
38
1188-1198
MissingFormLabel
- 38
Yoshiji H, Kuriyama S, Yoshii J. et al .
Vascular endothelial growth factor and receptor interaction is a prerequisite for
murine hepatic fibrogenesis.
Gut.
2003;
52
1347-1354
MissingFormLabel
- 39
Ogata H, Chinen T, Yoshida T. et al .
Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1
production.
Oncogene.
2006;
25
2520-2530
MissingFormLabel
- 40
Kovalovich K, DeAngelis R A, Li W. et al .
Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice.
Hepatology.
2000;
31
149-159
MissingFormLabel
- 41
Hillebrandt S, Goos C, Matern S. et al .
Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility
locus Hfib1 on chromosome 15.
Gastroenterology.
2002;
123
2041-2051
MissingFormLabel
- 42
Muriel P, Escobar Y.
Kupffer cells are responsible for liver cirrhosis induced by carbon tetrachloride.
J Appl Toxicol.
2003;
23
103-108
MissingFormLabel
- 43
Nakatsukasa H, Nagy P, Evarts R P. et al .
Cellular distribution of transforming growth factor-beta 1 and procollagen types I,
III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis.
J Clin Invest.
1990;
85
1833-1843
MissingFormLabel
- 44
Kim K H, Kim H C, Hwang M Y. et al .
The antifibrotic effect of TGF-beta1 siRNAs in murine model of liver cirrhosis.
Biochem Biophys Res Commun.
2006;
343
1072-1078
MissingFormLabel
- 45
Yu C, Wang F, Jin C. et al .
Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient
mice.
Am J Pathol.
2002;
161
2003-2010
MissingFormLabel
- 46
Sanz S, Pucilowska J B, Liu S. et al .
Expression of insulin-like growth factor I by activated hepatic stellate cells reduces
fibrogenesis and enhances regeneration after liver injury.
Gut.
2005;
54
134-141
MissingFormLabel
- 47
Nabeshima Y, Tazuma S, Kanno K. et al .
Anti-fibrogenic function of angiotensin II type 2 receptor in CCl4-induced liver fibrosis.
Biochem Biophys Res Commun.
2006;
346
658-664
MissingFormLabel
- 48
Bataller R, Schwabe R F, Choi Y H. et al .
NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical
in hepatic fibrosis.
J Clin Invest.
2003;
112
1383-1394
MissingFormLabel
- 49
Yeh C N, Maitra A, Lee K F. et al .
Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating
the multi-stage progression of human cholangiocarcinoma.
Carcinogenesis.
2004;
25
631-636
MissingFormLabel
- 50
Li X, Benjamin I S, Alexander B.
Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat
with no mortality.
J Hepatol.
2002;
36
488-493
MissingFormLabel
- 51
Kornek M, Raskopf E, Guetgemann I. et al .
Combination of systemic thioacetamide (TAA) injections and ethanol feeding accelerates
hepatic fibrosis in C3H/He mice and is associated with intrahepatic up regulation
of MMP-2, VEGF and ICAM-1.
J Hepatol.
2006;
45
370-376
MissingFormLabel
- 52
Dai K, Qi J Y, Tian D Y.
Leptin administration exacerbates thioacetamide-induced liver fibrosis in mice.
World J Gastroenterol.
2005;
11
4822-4826
MissingFormLabel
- 53
Leclercq I A, Farrell G C, Schriemer R. et al .
Leptin is essential for the hepatic fibrogenic response to chronic liver injury.
J Hepatol.
2002;
37
206-213
MissingFormLabel
- 54
Honda H, Ikejima K, Hirose M. et al .
Leptin is required for fibrogenic responses induced by thioacetamide in the murine
liver.
Hepatology.
2002;
36
12-21
MissingFormLabel
- 55
Jenkins S A, Grandison A, Baxter J N. et al .
A dimethylnitrosamine-induced model of cirrhosis and portal hypertension in the rat.
J Hepatol.
1985;
1
489-499
MissingFormLabel
- 56
Kitamura K, Nakamoto Y, Akiyama M. et al .
Pathogenic roles of tumor necrosis factor receptor p55-mediated signals in dimethylnitrosamine-induced
murine liver fibrosis.
Lab Invest.
2002;
82
571-583
MissingFormLabel
- 57
Yasuda M, Shimizu I, Shiba M. et al .
Suppressive effects of estradiol on dimethylnitrosamine-induced fibrosis of the liver
in rats.
Hepatology.
1999;
29
719-727
MissingFormLabel
- 58
Yoshida T, Ogata H, Kamio M. et al .
SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis.
J Exp Med.
2004;
199
1701-1707
MissingFormLabel
- 59
Xu J, Lee G, Wang H. et al .
Limited role for CXC chemokines in the pathogenesis of alpha-naphthyl isothiocyanate-induced
liver injury.
Am J Physiol Gastrointest Liver Physiol.
2004;
287
G734-G741
MissingFormLabel
- 60
Ramadori G, Knittel T, Odenthal M. et al .
Synthesis of cellular fibronectin by rat liver fat-storing (Ito) cells: regulation
by cytokines.
Gastroenterology.
1992;
103
1313-1321
MissingFormLabel
- 61
Bayer E M, Herr W, Kanzler S. et al .
Transforming growth factor-beta1 in autoimmune hepatitis: correlation of liver tissue
expression and serum levels with disease activity.
J Hepatol.
1998;
28
803-811
MissingFormLabel
- 62
Roulot D, Durand H, Coste T. et al .
Quantitative analysis of transforming growth factor beta 1 messenger RNA in the liver
of patients with chronic hepatitis C: absence of correlation between high levels and
severity of disease.
Hepatology.
1995;
21
298-304
MissingFormLabel
- 63
Kanzler S, Baumann M, Schirmacher P. et al .
Prediction of progressive liver fibrosis in hepatitis C infection by serum and tissue
levels of transforming growth factor-beta.
J Viral Hepat.
2001;
8
430-437
MissingFormLabel
- 64
Sanderson N, Factor V, Nagy P. et al .
Hepatic expression of mature transforming growth factor beta 1 in transgenic mice
results in multiple tissue lesions.
Proc Natl Acad Sci USA.
1995;
92
2572-2576
MissingFormLabel
- 65
Kopp J B, Factor V M, Mozes M. et al .
Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal
disease.
Lab Invest.
1996;
74
991-1003
MissingFormLabel
- 66
Clouthier D E, Comerford S A, Hammer R E.
Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1
transgenic mice.
J Clin Invest.
1997;
100
2697-2713
MissingFormLabel
- 67
Kanzler S, Lohse A W, Keil A. et al .
TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis.
Am J Physiol.
1999;
276
G1059-G1068
MissingFormLabel
- 68
Ueberham E, Low R, Ueberham U. et al .
Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic
mice leads to reversible intermediary fibrosis.
Hepatology.
2003;
37
1067-1078
MissingFormLabel
- 69
Fredriksson L, Li H, Eriksson U.
The PDGF family: four gene products form five dimeric isoforms.
Cytokine Growth Factor Rev.
2004;
15
197-204
MissingFormLabel
- 70
Breitkopf K, Roeyen C, Sawitza I. et al .
Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta
in activated rat hepatic stellate cells (HSC).
Cytokine.
2005;
31
349-357
MissingFormLabel
- 71
Pinzani M, Milani S, Grappone C. et al .
Expression of platelet-derived growth factor in a model of acute liver injury.
Hepatology.
1994;
19
701-707
MissingFormLabel
- 72
Wong L, Yamasaki G, Johnson R J. et al .
Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes
during cellular activation in vivo and in culture.
J Clin Invest.
1994;
94
1563-1569
MissingFormLabel
- 73
Czochra P, Klopcic B, Meyer E. et al .
Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice.
J Hepatol.
2006;
45
419-428
MissingFormLabel
- 74
Borkham-Kamphorst E, Stoll D, Gressner A M. et al .
Antisense strategy against PDGF B-chain proves effective in preventing experimental
liver fibrogenesis.
Biochem Biophys Res Commun.
2004;
321
413-423
MissingFormLabel
- 75
Campbell J S, Hughes S D, Gilbertson D G. et al .
Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular
carcinoma.
Proc Natl Acad Sci USA.
2005;
102
3389-3394
MissingFormLabel
- 76
Yoshiji H, Kuriyama S, Miyamoto Y. et al .
Tissue inhibitor of metalloproteinases-1 promotes liver fibrosis development in a
transgenic mouse model.
Hepatology.
2000;
32
1248-1254
MissingFormLabel
- 77
Fernandez-Salguero P, Pineau T, Hilbert D M. et al .
Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah
receptor.
Science.
1995;
268
722-726
MissingFormLabel
- 78
Popov Y, Patsenker E, Fickert P. et al .
Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation
of pro- and antifibrogenic genes.
J Hepatol.
2005;
43
1045-1054
MissingFormLabel
- 79
Rudolph K L, Chang S, Millard M. et al .
Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery.
Science.
2000;
287
1253-1258
MissingFormLabel
- 80
Tomita K, Tamiya G, Ando S. et al .
Tumour necrosis factor alpha signalling through activation of Kupffer cells plays
an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.
Gut.
2006;
55
415-424
MissingFormLabel
- 81
Warskulat U, Borsch E, Reinehr R. et al .
Chronic liver disease is triggered by taurine transporter knockout in the mouse.
FASEB0 J.
2006;
20
574-576
MissingFormLabel
- 82
Issa R, Zhou X, Constandinou C M. et al .
Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution
associated with matrix cross-linking.
Gastroenterology.
2004;
126
1795-1808
MissingFormLabel
- 83
Liu X, Hu H, Yin J Q.
Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis.
Liver Int.
2006;
26
8-22
MissingFormLabel
- 84
Knittel T, Janneck T, Muller L. et al .
Transforming growth factor beta 1-regulated gene expression of Ito cells.
Hepatology.
1996;
24
352-360
MissingFormLabel
- 85
George J, Roulot D, Koteliansky V E. et al .
In vivo inhibition of rat stellate cell activation by soluble transforming growth
factor beta type II receptor: a potential new therapy for hepatic fibrosis.
Proc Natl Acad Sci USA.
1999;
96
12 719-12 724
MissingFormLabel
- 86
Qi Z, Atsuchi N, Ooshima A. et al .
Blockade of type beta transforming growth factor signaling prevents liver fibrosis
and dysfunction in the rat.
Proc Natl Acad Sci USA.
1999;
96
2345-2349
MissingFormLabel
- 87
Nakamura T, Sakata R, Ueno T. et al .
Inhibition of transforming growth factor beta prevents progression of liver fibrosis
and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats.
Hepatology.
2000;
32
247-255
MissingFormLabel
- 88
Gouville A C, Boullay V de, Krysa G. et al .
Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced
liver fibrosis.
Br J Pharmacol.
2005;
145
166-177
MissingFormLabel
- 89
Henderson N C, Mackinnon A C, Farnworth S L. et al .
Galectin-3 regulates myofibroblast activation and hepatic fibrosis.
Proc Natl Acad Sci USA.
2006;
103
5060-5065
MissingFormLabel
- 90
Wang C H, Lee T H, Lu C N. et al .
Electroporative alpha-MSH gene transfer attenuates thioacetamide-induced murine hepatic
fibrosis by MMP and TIMP modulation.
Gene Ther.
2006;
13
1000-1009
MissingFormLabel
- 91
Teixeira-Clerc F, Julien B, Grenard P. et al .
CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis.
Nat Med.
2006;
12
671-676
MissingFormLabel
- 92
Osei-Hyiaman D, DePetrillo M, Pacher P. et al .
Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis
and contributes to diet-induced obesity.
J Clin Invest.
2005;
115
1298-1305
MissingFormLabel
- 93
Xia J L, Dai C, Michalopoulos G K. et al .
Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation.
Am J Pathol.
2006;
168
1500-1512
MissingFormLabel
- 94
Novobrantseva T I, Majeau G R, Amatucci A. et al .
Attenuated liver fibrosis in the absence of B cells.
J Clin Invest.
2005;
115
3072-3082
MissingFormLabel
Ansgar W. Lohse, MD
I. Department of Medicine, University Clinic Hamburg, Germany
Martinistrasse 52
20246 Hamburg, Germany
Phone: ++49/40/4 28 03 39 10
Fax: ++49/40/4 28 03 85 31
Email: alohse@uke.uni-hamburg.de