ABSTRACT
Our understanding of the mechanisms underlying cerebrovascular atherosclerosis has
improved in recent years, but significant gaps remain. New insights into the vascular
biological processes that result in ischemic stroke may come from cellular and molecular
profiling studies of the peripheral blood. In recent cellular profiling studies, increased
levels of a proinflammatory T-cell subset (CD4+CD28-) have been associated with stroke recurrence and death. Expansion of this T-cell
subset may occur after ischemic stroke and be a pathogenic mechanism leading to recurrent
stroke and death. Increases in certain phenotypes of endothelial cell microparticles
have been found in stroke patients relative to controls, possibly indicating a state
of increased vascular risk. Molecular profiling approaches include gene expression
profiling and proteomic methods that permit large-scale analyses of the transcriptome
and the proteome, respectively. Ultimately panels of genes and proteins may be identified
that are predictive of stroke risk. Cellular and molecular profiling studies of the
peripheral blood and of atherosclerotic plaques may also pave the way for the development
of therapeutic agents for primary and secondary stroke prevention.
KEYWORDS
Endothelium - peripheral blood - lymphocyte - gene expression
REFERENCES
- 1
Corti R, Fuster V.
New understanding, diagnosis, and prognosis of atherothrombosis and the role of imaging.
Am J Cardiol.
2003;
91(suppl)
17A-26A
- 2
Hirsch A T, Folsom A R.
The continuum of risk. Vascular pathophysiology, function and structure.
Circulation.
2004;
110
2774-2777
- 3
Hallenbeck J M, Dutka A J.
Background review and current concepts of reperfusion injury.
Arch Neurol.
1990;
47
1245-1254
- 4
Libby P.
Inflammation in atherosclerosis.
Nature.
2002;
420
868-874
- 5
DeGraba T J.
Immunogenetic susceptibility of atherosclerotic stroke. Implications on current and
future treatment of vascular inflammation.
Stroke.
2004;
35(suppl 1)
2712-2719
- 6
Rost N S, Wolf P A, Kase C S et al..
Plasma concentration of C-reactive protein and risk of ischemic stroke and transient
ischemic attack: the Framingham study.
Stroke.
2001;
32
2575-2579
- 7
Curb J D, Abbott R D, Rodriguez B L et al..
C-reactive protein and the future risk of thromboembolic stroke in healthy men.
Circulation.
2003;
107
2016-2020
- 8
Toole J F, Malinow M R, Chambless L E et al..
Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke,
myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP)
randomized controlled trial.
JAMA.
2004;
291
565-575
- 9
Tanne D, Haim M, Boyko V et al..
Soluble intercellular adhesion molecule-1 and risk of future ischemic stroke: a nested
case-control study from the Bezafibrate Infarction Prevention (BIP) study cohort.
Stroke.
2002;
33
2182-2186
- 10
van Exel E, Gussekloo J, de Craen AJM<, Bootsma-van der Wiel A, Frölich M, Westendorp RGJ<.
Inflammation and stroke: the Leiden 85-plus study.
Stroke.
2002;
33
1135-1138
- 11
Davies P F.
Molecular phenotypes of atherosclerosis. Fingering the perpetrators.
Arterioscler Thromb Vasc Biol.
2004;
24
1746-1747
- 12
Ridker P M, Cannon C P, Morrow D et al..
Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial
Infarction 22 (PROVE IT-TIMI 22) Investigators. C-reactive protein levels and outcomes
after statin therapy.
N Engl J Med.
2005;
352
20-28
- 13
DeGraba T J, Sirén A-L<, Penix L et al..
Increased endothelial expression of intercellular adhesion molecule-1 (ICAM-1) in
symptomatic vs asymptomatic carotid atherosclerotic plaque.
Stroke.
1998;
29
1405-1410
- 14
Nadareishvili Z G, Ruetzler C, Szekely B, LaBiche R, DeGraba T J.
CD4-CD154 receptor ligand interaction in Chlamydia pneumoniae positive atherosclerotic plaque.
Neurology.
2001;
56
A462
- 15
Kochanek P M, Hallenbeck J M.
Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral
ischemia and stroke.
Stroke.
1992;
23
1367-1379
- 16
Ernst E, Hammerschmidt D E, Bagge U, Matrai A, Dormandy J A.
Leukocytes and the risk of ischemic diseases.
JAMA.
1987;
257
2318-2324
- 17
Grau A J, Boddy A W, Dukovic D A et al..
CAPRIE Investigators. Leukocyte count as an independent predictor of recurrent ischemic
events.
Stroke.
2004;
35
1147-1152
- 18
Chapman C M, Beilby J P, McQuillan B M, Thompson P L, Hung J.
Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk
marker for subclinical carotid atherosclerosis.
Stroke.
2004;
35
1619-1624
- 19
Garlichs C D, Kozina S, Fateh-Moghadam S et al..
Upregulation of CD40-CD40 ligand (CD154) in patients with acute cerebral ischemia.
Stroke.
2003;
34
1412-1418
- 20
Chen W, Wahl S M.
TGF-beta: the missing link in CD4(+)CD25(+) regulatory T cell-mediated immunosuppression.
Cytokine Growth Factor Rev.
2003;
14
85-89
- 21
Becker K J.
Targeting the central nervous system inflammatory response in ischemic stroke.
Curr Opin Neurol.
2001;
14
349-353
- 22
Alvord Jr E C, Hsu P C, Thron R.
Leuokocyte sensitivity to brain fractions in neurological diseases.
Arch Neurol.
1974;
30
296-299
- 23
Youngchaiyud U, Coates A S, Whittingham S, Mackay I R.
Cellular immune response to myelin protein: absence in multiple sclerosis and presence
in cerebrovascular accidents.
Aust N Z J Med.
1974;
4
535-538
- 24
Wang W Z, Olsson T, Kostulas V, Hojeberg B, Ekre H P, Link H.
Myelin antigen reactive T cells in cerebrovascular diseases.
Clin Exp Immunol.
1992;
88
157-162
- 25
Namekawa T, Wagner U G, Goronzy J J, Weyand C M.
Functional subsets of CD4 T cells in rheumatoid synovitis.
Arthritis Rheum.
1998;
41
2108-2116
- 26
Liuzzo G, Kopecky S L, Frye R L et al..
Perturbation of the T-cell repertoire in patients with unstable angina.
Circulation.
1999;
100
2135-2139
- 27
Weyand C M, Gorozny J J, Liuzzo G et al..
T-cell immunity in acute coronary and syndromes.
Mayo Clin Proc.
2001;
76
1011-1020
- 28
Edmead C E, Lamb J R, Hoyne G F.
The T cell surface protein, CD28.
Int J Biochem Cell Biol.
1997;
29
1053-1057
- 29
Nakajima T, Schulte S, Warrington K J et al..
T-cell-mediated lysis of endothelial cells in acute coronary syndromes.
Circulation.
2002;
105
570-575
- 30
Vallejo A N, Schirmer M, Weyand C M, Goronzy J J.
Clonality and longevity of CD4 + CD28null T cells are associated with defects in apoptotic
pathways.
J Immunol.
2000;
165
6301-6307
- 31
Nadareishvili Z, Li H, Wright V et al..
Elevated pro-inflammatory CD4+CD28- lymphocytes and stroke recurrence and death.
Neurology.
2004;
63
1446-1451
- 32
Gerli R, Schillaci G, Giordano A et al..
CD4+CD28- T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis
patients.
Circulation.
2004;
109
2744-2748
- 33
Ostrowski S R, Gerstoft J, Pedersen B K, Ullum H.
A low level of CD4+CD28+ T cells is an independent predictor of high mortality in
human immunodeficiency virus type 1-infected patients.
J Infect Dis.
2003;
187
1726-1734
- 34
Alberts-Grill N M, Nadareishvili Z, Stranix J T et al..
Delayed expansion of pro-inflammatory CD3+CD4+CD28- lymphocytes following ischemic stroke.
Stroke.
2005;
36
517
, (Abstract)
- 35
North American Symptomatic Carotid Endarterectomy Trial Collaborators .
Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade
carotid stenosis.
N Engl J Med.
1991;
325
445-453
- 36
Toole J F. on behalf of the ACAS Executive Committee .
ACAS recommendations for carotid endarterectomy.
Lancet.
1996;
347
121
- 37
Combes V, Simon A C, Grau G E et al..
In vitro generation of endothelial microparticles and possible prothrombotic activity
in patients with lupus anticoagulant.
J Clin Invest.
1999;
104
93-102
- 38
Berckmans R J, Neiuwland R, Boing A N, Romijn F P, Hack C E, Sturk A.
Cell-derived microparticles circulate in healthy humans and support low grade thrombin
generation.
Thromb Haemost.
2001;
85
639-646
- 39
Simak J, Gelderman M, Yu H, Wright V, Alberts-Grill N, Baird A E.
Elevated circulating endothelial microparticles in acute stroke patients: a correlation
with brain lesion volume and clinical outcome.
Blood.
2004;
104
3504
, (Abstract)
- 40
Gretarsdottir S, Thorleifsson G, Reynisdottir S T et al..
The gene encoding phosphodiesterase 4D confers risk of ischemic stroke.
Nat Genet.
2003;
35
131-138
- 41
Helgadottir A, Manolescu A, Thorleifsson G et al..
The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction
and stroke.
Nat Genet.
2004;
36
233-239
- 42
Schena M, Shalon D, Davis R W, Brown P O.
Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Science.
1995;
270
467-470
- 43
Lockhart D J, Dong H, Byrne M C et al..
Expression monitoring by hybridization to high-density oligonucleotide arrays.
Nat Biotechnol.
1996;
14
1675-1680
- 44
Virtanen C, Ishikawa Y, Honjoh D et al..
Integrated classification of lung tumors and cell lines by expression profiling.
Proc Natl Acad Sci USA.
2002;
99
12357-12362
- 45
Alizadeh A A, Eisen M B, Davis R E et al..
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature.
2000;
403
503-511
- 46
Bittner M, Meltzer P, Chen Y et al..
Molecular classification of cutaneous malignant melanoma by gene expression profiling.
Nature.
2000;
406
536-540
- 47
Bhattacharjee A, Richards W G, Staunton J et al..
Classification of human lung carcinomas by mRNA expression profiling reveals distinct
adenocarcinoma subclasses.
Proc Natl Acad Sci USA.
2001;
98
13790-13795
- 48
Van de Vijver M J, He Y D, van't Veer L J et al..
A gene expression signature as a predictor of survival in breast cancer.
N Engl J Med.
2002;
347
1999-2009
- 49
Jones M H, Virtanen C, Honjoh D et al..
Two prognostically significant subtypes of high-grade lung neuroendocrine tumors independent
of small-cell and large-cell neuroendocrine carcinomas identified by gene expression
profiles.
Lancet.
2004;
363
775-781
- 50
Chang J C, Wooten E C, Tsimelzon A et al..
Gene expression profiling for the prediction of therapeutic response to docetaxel
in patients with breast cancer.
Lancet.
2003;
362
362-369
- 51
Barrans J D, Allen P D, Stamatiou D, Dzau V J, Liew C C.
Global gene expression profiling of end-stage dilated cardiomyopathy using a human
cardiovascular-based cDNA microarray.
Am J Pathol.
2002;
160
2035-2043
- 52
Moore D F, Li H, Jeffries N et al..
Using peripheral blood mononuclear cells to determine a gene expression profile of
acute ischemic stroke: a pilot investigation.
Circulation.
2005;
111
212-221
- 53
Jison M L, Munson P J, Barb J J et al..
Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic
and inflammatory stress of sickle cell disease.
Blood.
2004;
104
270-280
- 54
Seo D, Wang T, Dressman H et al..
Gene expression phenotypes of atherosclerosis.
Arterioscler Thromb Vasc Biol.
2004;
24
1922-1927
- 55
Greenberg S A.
DNA microarray gene expression analysis and its application to neurological disorders.
Neurology.
2001;
57
755-761
- 56
Napoli C, Lerman L O, Sica V, Lerman A, Tajana G, de Nigris F.
Microarray analysis: a novel research tool for cardiovascular scientists and physicians.
Heart.
2003;
89
597-604
- 57
Collins F S, Green E D, Guttmacher A E, Guyer M S. on behalf of the US National Human
Genome Research Institute .
A vision for the future of genomics research.
Nature.
2003;
422
835-847
- 58
Anderson L.
Candidate-based proteomics in the search for biomarkers of cardiovascular disease.
J Physiol.
2005;
563
23-60
- 59
Allard L, Lescuyer P, Burgess J et al..
ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic
and hemorrhagic stroke.
Proteomics.
2004;
4
2242-2251
- 60
Lynch J R, Blessing R, White W D, Grocott H P, Newman M F, Laskowitz D T.
Novel diagnostic test for acute stroke.
Stroke.
2004;
35
57-63
Alison E BairdF.R.A.C.P. Ph.D.
Stroke Neuroscience Unit, NINDS/NIH, 10 Center Drive, MSC1294, Room 3N258, Bethesda,
MD 20814