Semin Thromb Hemost 2006; 32(3): 295-304
DOI: 10.1055/s-2006-939442
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Thrombopoietin and Platelet Function

Jan Willm N. Akkerman1
  • 1Professor, Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
Further Information

Publication History

Publication Date:
02 May 2006 (online)

ABSTRACT

In hematopoietic stem cells and megakaryocytes, the thrombopoietin (TPO) receptor signals to control proliferation, maturation, and antiapoptosis. In the anucleated platelet, much of this signaling appears out of place. Nevertheless, platelets possess TPO receptors and the cascades for transduction of TPO signals, but the final effect has shifted from DNA regulation to control of platelet aggregation and secretion. Although at physiological concentrations, TPO is not a sufficiently strong stimulator to trigger platelet functions in the absence of a second stimulator, TPO increases the sensitivity of platelets to agonist stimulation, leading to better functions at lower stimulation.

REFERENCES

  • 1 Kuter D J, Begley C G. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies.  Blood. 2002;  100 3457-3469
  • 2 Feese M D, Tamada T, Kato Y et al.. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment.  Proc Natl Acad Sci USA. 2004;  101 1816-1821
  • 3 Fishley B, Alexander W S. Thrombopoietin signalling in physiology and disease.  Growth Factors. 2004;  22 151-155
  • 4 Kaushansky K. Thrombopoietin: a tool for understanding thrombopoiesis.  J Thromb Haemost. 2003;  1 1587-1592
  • 5 Kaushansky K. Etiology of the myeloproliferative disorders: the role of thrombopoietin.  Semin Hematol. 2003;  40 6-9
  • 6 Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense.  Blood. 2005;  105 4187-4190
  • 7 Royer Y, Staerk J, Costuleanu M, Courtoy P J, Constantinescu S N. Janus kinases affect thrombopoietin receptor cell surface localization and stability.  J Biol Chem. 2005;  280 27251-27261
  • 8 Le Roith D, Nissley P. Knock your SOCS off!.  J Clin Invest. 2005;  115 397-406
  • 9 Gurney A L, Wong S C, Henzel W J, de Sauvage F J. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-Stat signal transduction pathway and Shc phosphorylation.  Proc Natl Acad Sci USA. 1995;  92 5292-5296
  • 10 Roux P P, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.  Microbiol Mol Biol Rev. 2004;  68 320-324
  • 11 Kamata T, Pritchard C A, Leavitt A D. Raf-1 is not required for megakaryocytopoiesis or TPO-induced ERK phosphorylation.  Blood. 2004;  103 2568-2570
  • 12 Fang J Y, Richardson B C. The MAPK signalling pathways and colorectal cancer.  Lancet Oncol. 2005;  6 322-327
  • 13 Kirito K, Fox N, Kaushansky K. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells.  Blood. 2003;  102 3172-3178
  • 14 Den Dekker E, Gorter G, van der Vuurst H, Heemskerk J WM, Akkerman J WN. Biogenesis of G-protein mediated Ca2+ signalling in human megakaryocytes.  Thromb Haemost. 2001;  86 1106-1113
  • 15 Den Dekker E, Gorter G, Heemskerk J WM, Akkerman J WN. Development of platelet inhibition by cAMP during megakaryocytopoiesis.  J Biol Chem. 2002;  277 29321-29329
  • 16 Debili N, Wendling F, Cosman D et al.. The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets.  Blood. 1995;  85 391-401
  • 17 Shock D D, He K, Wencel-Drake J D, Parise L V. Ras activation in platelets after stimulation of the thrombin receptor, thromboxane A2 receptor or protein kinase C.  Biochem J. 1997;  321 525-530
  • 18 Miyakawa Y, Oda A, Druker B J et al.. Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets.  Blood. 1995;  86 23-27
  • 19 Miyakawa Y, Oda A, Druker B J et al.. Thrombopoietin induces tyrosine phosphorylation of Stat3 and Stat5 in human blood platelets.  Blood. 1996;  87 439-446
  • 20 Chen J, Herceg-Harjacek L, Groopman J E, Grabarek J. Regulation of platelet activation in vitro by the c-Mpl ligand, thrombopoietin.  Blood. 1995;  86 4054-4062
  • 21 Li J, Xia Y, Kuter D J. The platelet thrombopoietin receptor number and function are markedly decreased in patients with essential thrombocythaemia.  Br J Haematol. 2000;  111 943-953
  • 22 Van Willigen G, Gorter G, Akkerman J WN. Thrombopoietin increases platelet sensitivity to α-thrombin via activation of the ERK2-cPLA2 pathway.  Thromb Haemost. 2000;  83 610-616
  • 23 Chen J, De S, Damron D S, Chen W S, Hay N, Byzova T V. Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice.  Blood. 2004;  104 1703-1710
  • 24 Van Os E, Wu Y, Pauwels J G et al.. Thrombopoietin increases platelet adhesion under flow conditions and decreases rolling.  Br J Haematol. 2003;  121 482-490
  • 25 Harker L A, Marzec U M, Hunt P et al.. Dose-response effects of pegylated human megakaryocyte growth and development factor on platelet production and function in non-human primates.  Blood. 1996;  88 511-521
  • 26 Harker L A, Hunt P, Marzec U M et al.. Regulation of platelet production and function by megakaryocyte growth and development factor in non-human primates.  Blood. 1996;  87 1833-1844
  • 27 Campus F, Lova P, Bertoni A, Sinigaglia F, Balduini C, Torti M. Thrombopoietin complements G(i)- but not G(q)-dependent pathways for integrin αIIbß3 activation and platelet aggregation.  J Biol Chem. 2005;  280 24386-24395
  • 28 Kroner C, Eybrechts K, Akkerman J WN. Dual regulation of platelet protein kinase B.  J Biol Chem. 2000;  275 27790-27798
  • 29 Andrade Ferreira I, Mocking A IM, Urbanus R, Varlack S, Wnuk M, Akkerman J WN. Glucose uptake via GLUT3 in human platelets is regulated via protein kinase B.  J Biol Chem. 2005;  280 32625-32633
  • 30 Verhoeven A JM, Mommersteeg-Leautaud M E, Akkerman J WN. Quantification of energy consumption in platelets during thrombin-induced aggregation and secretion. Tight coupling between platelet responses and the increment in energy consumption.  Biochem J. 1984;  221 777-787
  • 31 Verhoeven A JM, Mommersteeg M E, Akkerman J WN. Balanced contribution of glycolytic and adenylate pool in supply of metabolic energy in platelets.  J Biol Chem. 1985;  260 2621-2624
  • 32 Phillips D R, Conley P B, Sinha U, Andre P. Therapeutic approaches in arterial thrombosis.  J Thromb Haemost. 2005;  3 1577-1589
  • 33 Hackeng C M, Relou I, Pladet M W, van Rijn H JM, Akkerman J WN. Early platelet activation by Low Density Lipoprotein via p38 mapkinase.  Thromb Haemost. 1999;  82 1749-1756
  • 34 James C, Ugo V, Le Couedic J P et al.. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera.  Nature. 2005;  434 1144-1148
  • 35 Gorter G, Akkerman J WN. Serine-threonine kinases. In: Gibbins JM, Mahaut-Smith MP Methods in Molecular Biology 273: Platelets and Megakaryocytes. Totowa, NJ; Humana Press 2004: 179-199

Jan Willm N AkkermanPh.D. 

University Medical Center Utrecht, Thrombosis and Haemostasis Laboratory, Department of Haematology (G03.647)

P.O. Box 85500, 3508 GA Utrecht, The Netherlands

Email: j.w.n.akkerman@lab.azu.nl

    >