Abstract
Leptin and thyroid hormones (TH) have the ability to increase energy expenditure. Biological effects of TH are dependent on thyroxine (T4) to triiodothyronine (T3) conversion by deiodinase type 1 (D1) and type 2 (D2). Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid axis and, also, to modulate 5′-deiodinases in different tissues, depending on energetic status of animals. Here, we examined the acute effects of leptin on hypothalamic, pituitary and BAT D2 and pituitary D1 activities. Male fed rats received a single subcutaneous injection of saline or leptin (8 μg/100 g BW) and sacrificed 2 hours later. Leptin promoted an important decrease in hypothalamic D2 (55% reduction, p <0.001) with no changes in pituitary D2, in concomitance with a 2-fold rise in serum TSH, suggesting that leptin acted at hypothalamus in order to stimulate TRH-TSH axis. In addition, BAT D2 was decreased by 25% (p<0.05). In contrast, pituitary D1 showed a 2-fold increase (p<0.001), indicating that, as demonstrated before for liver and thyroid D1, the pituitary enzyme is also acutely up-regulated by leptin. Serum concentrations of insulin and TH of leptin-injected animals remained unchanged. Regulation of 5′-deiodinases directing the local T3 production, is a mechanism by which leptin may alter hypothalamic, pituitary and BAT functions.
Key words
Thyrotropin - thyroid hormones - insulin - thyrotropin-releasing hormone
References
1
Flier JS.
Clinical review 94: What's in a name? In search of leptin's physiologic role.
J Clin Endocrinol Metab.
1998;
83
1407-1413
2
Passos MCF, Vicente LL, Lisboa PC, Moura EG.
Absence of anorectic effect to acute peripheral leptin treatment in adult rats whose mothers were malnourished during lactation.
Horm Metab Res.
2004;
36
625-629
3
Bonomo IT, Lisboa PC, Passos MCF, Pazos-Moura CC, Reis AM, Moura EG.
Prolactin inhibition in lactating rats changes leptin transfer through the milk.
Horm Metab Res.
2005;
37
220-225
4
Popovic V, Duntas LH.
Leptin TRH and ghrelin: influence on energy homeostasis at rest and during exercise.
Horm Metab Res.
2005;
37
533-537
5
Silva JE.
The thermogenic effect of thyroid hormone and its clinical implications.
Ann Intern Med.
2003;
139
205-213
6 Larsen PR, Davies TF, Hay ID. The Thyroid Gland. In: Wilson JD, Foster DW, Kronenberg HM, Larsen PR (eds). Williams's textbook of endocrinology Philadelphia: WB Saunders Co 1998: 389-515
7
Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier SJ.
Role of leptin in the neuroendocrine response to fasting.
Nature.
1996;
382
250-252
8
Seoane LM, Carro E, Tovar S, Casanueva FF, Dieguez C.
Regulation of in vivo TSH secretion by leptin.
Regul Pept.
2000;
92
25-29
9
Ortiga-Carvalho TM, Oliveira KJ, Soares BA, Pazos-Moura CC.
The role of leptin in the regulation of TSH secretion in the fed state: in vivo and in vitro studies.
J Endocrinol.
2002;
174
121-125
10
Veiga MALC, Oliveira KJ, Curty FH, Pazos-Moura CC.
Thyroid hormones modulate the endocrine and autocrine/paracrine actions of leptin on thyrotropin secretion.
J Endocrinol.
2004;
183
243-247
11
Farooqi SI, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S.
Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency.
J Clin Invest.
2002;
110
1093-1103
12
Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS.
The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men.
J Clin Invest.
2003;
111
1409-1421
13
Légrádi G, Emerson CH, Ahima RS, Flier JS, Lechan RM.
Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus.
Endocrinology.
1997;
138
2569-2576
14
Nillni EA, Aslet C, Harris M, Hollenberg A, Bjorbak C, Flier JS.
Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways.
J Biol Chem.
2000;
275
36124-36133
15
Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjorbaek C, Elmquist JK, Flier JS, Hollenberg AN.
Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling.
J Clin Invest.
2001;
107
111-120
16
Coppola A, Meli R, Diano S.
Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats.
Endocrinol.
2005;
146
2827-2833
17
Coppola A, Hughes J, Esposito E, Schiavo L, Meli R, Diano S.
Suppression of hypothalamic deiodinase type II activity blunts TRH mRNA decline during fasting.
FEBS Lett.
2005;
579
4654-4658
18
Cusin I, Rouru J, Visser T, Burger AG, Rohner-Jeanrenaud F.
Involvement of thyroid hormones in the effect of intra-cerebroventricular leptin infusion on uncoupling protein-3 expression in rat muscle.
Diabetes.
2000;
49
1101-1105
19
Lisboa PC, Oliveira KJ, Cabanelas A, Ortiga-Carvalho TM, Pazos-Moura CC.
Acute cold exposure, leptin, and somatostatin analog (octreotide) modulate thyroid 5′-deiodinase activity.
Am J Physiol Endocrinol Metab.
2003;
284
E1172-E1176
20
Cettour-Rose P, Burger AG, Meier CA, Visser TJ, Rohner-Jeanrenaud F.
Central stimulatory effect of leptin on T3 production is mediated by brown adipose tissue type 2 deiodinase.
Am J Physiol Endocrinol Metab.
2002;
283
E980-E987
21
Pazos-Moura CC, Moura EG, Dorris ML, Rehnmark S, Melendez L, Silva JE, Taurog A.
Effect of iodine deficiency and cold exposure on thyroxine 5′-deiodinase activity in various rat tissues.
Am J Physiol Endocrinol Metab.
1991;
260
E175-E182
22
Curty FH, Lisboa PC, Ortiga-Carvalho TM, Pazos-Moura CC.
The somatostatin analogue octreotide modulates iodothyronine deiodinase activity and pituitary neuromedin B.
Thyroid.
2000;
10
647-652
23
Bradford MM.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem.
1976;
72
248-254
24
Ortiga-Carvalho TM, Polak J, McCann S, Pazos-Moura CC.
Effect of thyroid hormones on pituitary neuromedin B and possible interaction between thyroid hormones and neuromedin B on thyrotropin secretion.
Regul Pept.
1996;
67
47-53
25
Kates AL, Himms-Hagen J.
Defective cold-induced stimulation of thyroxine 5′-deiodinase in brown adipose tissue of the genetically obese (ob/ob mouse).
Biochem Biophys Res Commun.
1985;
130
188-193
26
Kaplan MM, Young JB.
Abnormal thyroid hormone deiodination of ob/ob and db/db obese mice.
Endocrinology.
1987;
120
886-893
27
Florant GL, Porst H, Peiffer A, Hudachek SF, Pittman C, Summers SA, Rajala MW, Scherer PE.
Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris ).
J Comp Physiol.
2004;
174
633-639
28
Liu XT, Lin QS, Li QF, Huang CX, Sun RY.
Uncoupling protein mRNA, mitochondrial GTP-binding, and T4 5′-deiodinase activity of brown adipose tissue in Daurian ground squirrel during hibernation and arousal.
Comp Biochem Physiol A Mol Integr Physiol.
1998;
120
745-752
29
Saleri R, Grasselli F, Tamanini C.
Effects of different culture conditions and leptin on GH mRNA expression and GH secretion by pituitary cells.
Horm Metab Res.
2005;
37
214-219
30
Malendowicz LK, Gorska T, Tortorella C, Nowak M, Majchrzak M, Spinazzi R, Nussdorfer GG, Nowak KW.
Acute in vivo effects of leptin and leptin fragments on corticosteroid hormone secretion and entero-insular axis in the rat.
Int J Mol Med.
2004;
13
829-834
31
Silva JE, Larsen PR.
Hormonal regulation of iodothyronine 5′-deiodinase in rat brown adipose tissue.
Am J Physiol Endocrinol Metab.
1986;
251
E639-E643
32
Hillgartner FB, Romsos DR.
Regulation of iodothyronine 5′-deiodinase in lean and obese (ob/ob) mice.
Am J Physiol Endocrinol Metab.
1985;
249
E209-E218
33
Mobley PW, Dubuc PU.
Thyroid hormone levels in the developing obese-hyperglycemic syndrome.
Horm Metab Res.
1979;
11
37-39
34
Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O'Rahilly S.
Congenital leptin deficiency is associated with severe early-onset obesity in humans.
Nature.
1997;
387
903-908
35
Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougnères P, Lebouc Y, Froguel P, Guy-Grand B.
A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.
Nature.
1998;
392
398-401
Correspondence
Carmen C. Pazos de Moura
Laboratório de Endocrinologia Molecular·Instituto de Biofísica Carlos Chagas Filho·UFRJ, CCS, Bloco G·Cidade Universitária
Ilha do Fundão·CEP 21949·900·Rio de Janeiro, RJ·Brazil
Phone: +55/21/25 60 80 93 ext. 213
Fax: +55/21/22 80 81 93
Email: cpazosm@biof.ufrj.br