Dtsch Med Wochenschr 2006; 131(37): 2031-2037
DOI: 10.1055/s-2006-951329
Übersicht | Review article
Kardiologie
© Georg Thieme Verlag KG Stuttgart · New York

Primäre kardiale Ionenkanalerkrankungen als Ursache des plötzlichen Herztodes

Sudden cardiac death due to primary cardiac ion-channel diseasesG. Michels1 , U. C. Hoppe1
  • 1Klinik III für Innere Medizin, Universität zu Köln, Köln
Further Information

Publication History

eingereicht: 17.1.2006

akzeptiert: 25.4.2006

Publication Date:
08 September 2006 (online)

In Deutschland sterben ca. 120000 Menschen pro Jahr (USA: 300000-400000/Jahr) am plötzlichen Herztod, der hauptsächlich durch strukturelle Herzerkrankungen wie der koronaren Herzkrankheit oder Kardiomyopathien hervorgerufen wird. Ungefähr 1% dieser Fälle sind auf primäre kardiale Ionenkanalerkrankungen (primary arrhythmogenic disorders) zurückzuführen; dabei handelt es sich fast ausschliesslich um junge, meist gesunde Patienten ohne Zeichen einer strukturellen Herzerkrankung. Diese angeborenen kardialen Ionenkanalerkrankungen haben mutationsbedingte Dysregulationen von verschiedenen Ionenkanälen, Ionenkanal-interagierenden (Hilfs)-Proteinen oder zytosolischen Proteinen zur Folge. Mutationsbedingte Funktionsstörungen, die zu Veränderungen verschiedener Kalium- (IKs, IKr, IK1), Natrium- (INa), Kalzium-Ionenströme (ICa) bzw. der intrazellulären Kalzium-Homöostase führen, werden ursächlich für diese angeborenen Ionenkanalerkrankungen wie das Long-QT-Syndrom, das Short-QT-Syndrom, das Brugada-Syndrom und die katecholaminerge polymorphe ventrikuläre Tachykardie verantwortlich gemacht. Dieser Übersichtsartikel stellt eine Zusammenfassung von Pathophysiologie, Klinik, Diagnostik und Therapie dieser Syndrome dar. Das klinische Erscheinungsbild reicht von asymptomatischen Verläufen bis hin zum plötzlichen Herztod. Die ICD-Implantation nimmt insbesondere bei Hochrisikopatienten den größten therapeutischen Stellenwert ein. Ein besseres molekularbiologisches Grundlagenverständnis über diese kardialen Ionenkanalerkrankungen verspricht neue Wege der Diagnostik (genspezifische Risikostratifizierung) und der genspezifischen Therapie.

Summary

Sudden cardiac death (SCD) has an incidence of around 120000 individuals per year in Germany (US: 300000-400000/a). It is predominantly caused by structural heart diseases such as coronary artery disease or cardiomyopathies. About 1% of SCD is caused by primary arrhythmogenic disorders especially in young patients without structural heart disease. These inherited cardiac channelopathies are genetic disorders based on DNA mutations of different ion-channels and ion-channel interacting-proteins. Mutations in these genes encoding cardiac ion-channels, auxiliary (modulating) proteins or cytosolic-intercellular proteins, which are important for different potassium (IKs, IKr, IK1), sodium (INa) and calcium currents (ICa) or cytosolic calcium homeostasis, have been associated with different primary electrical diseases such as Long-QT-syndrome, Short-QT-syndrome, Brugada-syndrome and catecholaminergic polymorphic ventricular tachycardia. This article reviews the pathophysiological mechanisms and clinical features as well as diagnostic and therapeutic features of these syndromes. Their clinical manifestations range from an asymptomatic course to sudden cardiac death. Therapies include pharmacological tools and/or implantation of a cardioverter-defibrillator in high-risk patients. Improved understanding of the basic biology of these cardiac ion-channel diseases holds the promise of identifying new molecular targets for better diagnosis such as gene-risk stratification and specific treatment of these primary arrhythmogenic disorders.

Literatur

  • 1 Ackerman M J. Cardiac channelopathies: it’s in the genes.  Nat Med. 2004;  10 463-464
  • 2 Ackerman M J. Genotype-phenotype relationships in congenital long QT syndrome.  J Electrocardiol. 2005;  38 64-68
  • 3 Akar F G, Yan G X, Antzelevitch C. Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome.  Circulation. 2002;  105 1247-1253
  • 4 Andersen E D, Krasilnikoff P A, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome?.  Acta Paediatr Scand. 1971;  60 559-564
  • 5 Antzelevitch C. Modulation of transmural repolarization.  Ann N Y Acad Sci. 2005;  1047 314-323
  • 6 Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report.  J Am Coll Cardiol. 1992;  20 1391-1396
  • 7 Brugada P, Brugada R, Brugada J. Should patients with an asymptomatic Brugada electrocardiogram undergo pharmacological and electrophysiological testing?.  Circulation. 2005;  112 279-292
  • 8 Dumaine R, Towbin J A, Brugada P. et al . Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent.  Circ Res. 1999;  85 803-809
  • 9 Gussak I, Bjerregaard P. Short QT syndrome - 5 years of progress.  J Electrocardiol. 2005;  38 375-377
  • 10 Gussak I, Brugada P, Brugada J. et al . Idiopathic short QT interval: a new clinical syndrome?.  Cardiology. 2000;  94 99-102
  • 11 Hoppe U C. Gen- und Zelltherapie bei Arrhythmien: Realistische Perspektive oder Utopie?.  Dtsch Med Wochenschr. 2004;  129 2198-2201
  • 12 Hoppe U C, Johns D C, Marban E, O’Rourke B. Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential.  Circ Res. 1999;  84 964-972
  • 13 Hoppe U C, Marbán E, Johns D C. Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer.  J Clin Invest. 2000;  105 1077-1084
  • 14 Hoppe U C, Marbán E, Johns D C. Distinct gene-specific mechanisms of arrhythmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1.  Proc Natl Acad Sci U S A. 2001;  98 5335-5340
  • 15 Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death.  Am Heart J. 1957;  54 59-68
  • 16 Jiang D, Xiao B, Zhang L, Chen S R. Enhanced basal activity of a cardiac Ca2 + release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death.  Circ Res. 2002;  91 218-225
  • 17 Kontula K, Laitinen P J, Lehtonen A, Toivonen L, Viitasalo M, Swan H. Catecholaminergic polymorphic ventricular tachycardia: recent mechanistic insights.  Cardiovasc Res. 2005;  67 379-387
  • 18 Lange P S, Er F, Gassanov N, Hoppe U C. Andersen mutations of KCNJ2 suppress the native inward rectifier current I(K1) in a dominant-negative fashion.  Cardiovasc Res. 2003;  59 321-327
  • 19 Lehnart S E, Wehrens X H. et al . Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak.  Circulation. 2004;  109 3208-3214
  • 20 Michels G, Er F, Khan I F, Südkamp M, Herzig S, Hoppe U C. Single-channel properties support a potential contribution of HCN channels and If to cardiac arrhythmias.  Circulation. 2005;  111 399-404
  • 21 Mohler P J, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting.  Curr Opin Cardiol. 2005;  20 189-193
  • 22 Preisig-Muller R, Schlichthorl G, Goerge T. et al . Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome.  Proc Natl Acad Sci U S A. 2002;  99 7774-7779
  • 23 Priori S G. Inherited arrhythmogenic diseases: the complexity beyond monogenic disorders.  Circ Res. 2004;  94 140-145
  • 24 Priori S G, Napolitano C. Should patients with an asymptomatic Brugada electrocardiogram undergo pharmacological and electrophysiological testing?.  Circulation. 2005;  112 279-292
  • 25 Priori S G, Napolitano C, Memmi M. et al . Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia.  Circulation. 2002;  106 69-74
  • 26 Priori S G, Napolitano C, Tiso N. et al . Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia.  Circulation. 2001;  103 196-200
  • 27 Priori S G, Schwartz P J, Napolitano C. et al . Risk stratification in the long-QT syndrome.  N Engl J Med. 2003;  348 1866-1874
  • 28 Roden D M, George A L. The cardiac ion channels: relevance to management of arrhythmias.  Annu Rev Med. 1996;  47 135-148
  • 29 Saffitz J E. The pathology of sudden cardiac death in patients with ischemic heart disease - arrhythmology for anatomic pathologists.  Cardiovasc Pathol. 2005;  14 195-203
  • 30 Schimpf R, Wolpert C, Gaita F, Giustetto C, Borggrefe M. Short QT syndrome.  Cardiovasc Res. 2005;  67 357-366
  • 31 Schwartz P J, Moss A J, Vincent G M, Crampton R S. Diagnostic criteria for the long QT syndrome. An update.  Circulation. 1993;  88 782-784
  • 32 Schwartz P J, Priori S G, Spazzolini C. et al . Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias.  Circulation. 2001;  103 89-95
  • 33 Shah M, Akar F G, Tomaselli G F. Molecular basis of arrhythmias.  Circulation. 2005;  112 2517-2529
  • 34 Shimizu W. Acquired forms of the Brugada syndrome.  J Electrocardiol. 2005;  38 22-25
  • 35 Splawski I, Timothy K W, Sharpe L M. et al . Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.  Cell. 2004;  119 19-31
  • 36 Viatchenko-Karpinski S, Terentyev D, Gyorke I. et al . Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin.  Circ Res. 2004;  94 471-477
  • 37 Vincent G M. The molecular genetics of the long QT syndrome: genes causing fainting and sudden death.  Annu Rev Med. 1998;  49 263-274
  • 38 Ward O C. A new familial cardiac syndrome in children.  J Ir Med Assoc. 1964;  54 103-106
  • 39 Wever E F, Robles de Medina E O. Sudden death in patients without structural heart disease.  J Am Coll Cardiol. 2004;  43 1137-1144
  • 40 Wilde A A, Bezzina C R. Genetics of cardiac arrhythmias.  Heart. 2005;  91 1352-1358
  • 41 Wilde A A, Remme C A, Derksen R, Wever E F, Hauer R N. Brugada syndrome.  Eur Heart J. 2002;  23 675-676

Prof. Dr. med. Uta C. Hoppe

Klinik III für Innere Medizin der Universität zu Köln

Kerpener Straße 62

50937 Köln

Phone: 0221/4785059

Fax: 0221/4787929

Email: Uta.Hoppe@uni-koeln.de

    >